pl SourceForge

Collatz – Tales of Tails

Abstract: I explain how and why just looking at the last bits of numbers gives deep insights into their Collatz/2 (odds halved) sequences. The conclusion is for mathematicians to validate: I either show how to find an infinite amount of infinite counter-examples*) to the Collatz conjecture. Or at the least, I show that there can be no upper bound to sequence length. I can cheaply narrow down the amount of numbers that elude a trivial answer. These gaps between the trivial ones are the challenge. I can both construct examples of any great length, or systematically find them all up to a given length. Thanks to my prediction formula, I can skip calculating many initial steps of almost all sequences.

Collatz – Tales of Tails by Daniel Pfeiffer
is licensed under
Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0)
TL;DR The lowest l bits of any number exactly define the next l steps. Flipping bit l will make step l change direction. For one more bit, one (hard to predict) value will make the next step halve down, the other will make it multiply up. So some series of extra bits will ultimately make a sequence stop, while others will make it rise indefinitely.

Definitions: I call the lowest bits of a number its tail of length l (that's an ell). One calls to stop the fact that a Collatz sequence (your understanding of which I presume) reaches a smaller than the initial number. (The original notion of reaching 1 – or worse a tiny endless loop – is called total stopping, but that's not directly of interest here.) The terms Good, Bad and Ugly are so central, they get a chapter of their own.

As a software engineer, I took a bit-biter approach to his conjecture. By reformulating his arithmetic operations to equivalent bit-ops with only one addition (the 2nd, an increment, can be done by flipping the final bits up to and including the lowest 0-bit), my code is about ⅓ faster. I started out by playing with my Perl one-liner magic wand. But it has grown into a serious analysis. All of this was developed by me. But I haven't got an overview of relevant studies, so some or all of this might not be new*).

Wife plays board games with another man. She's monopoly­amorous. 🤭

Collatz' Game of Life

One can look at the bit transitions for each step as generations of an automaton. The trivial case for even numbers just copies down the bit that was on the left.

The odd case is fully ruled by the following table, where the rows are the preceding bit, the columns the same bit, and as a 3rd input whether we add 1. That's by definition the case for a lowest 1-bit, but also if the bits to the right produce a carry. A carry comes from '01' repetitions up to the end or up to a '11'.

+0+1
_0_1_0_1
0_0110
1_1001

That's it, from the perspective of each one resulting bit. It becomes '0' exactly if zero or two inputs are '1'. Maybe just an interesting digression because the carry bits somewhat chaotically depend on a varying number of positions to the right. Unlike Conway's cognate, no bit patterns can die out. On the contrary: even if a bit group doesn't get a carry added in, steps up will always make it grow to the right and in every other step also to the left.

However the exciting part is this: because, as we'll see next, the bit-oriented definition of T(n) has exactly one shift right in every step, exactly one bit from the left mingles in, and no others further left. And most importantly, it's deterministic: bits either stay the same or flip but never coalesce to the same value. Flip any of the 3 inputs, and it flips the output. The bit from the left is the most exciting one: it propagates straight towards the end and influences the next step, once it reaches the end.

Odds are, math puns make me feel even number. 😂

Tell-Tails

For proof by full induction it would be enough to show that every number stops. To this end the "shortcut" Collatz/2 (odds halved) function (which is the only variant I ever refer to here) when converted to a bit-shift operation

T ( n ) = { 3 n + 1 2 = 2 n + ( n - 1 ) + 2 2 = n + n 2 + 1 = n + n 1 + 1 if n odd n 2 = n 1 if n even

has an interesting property: in every step there's a shift right by 1 bit. In other words, the two lowest bits govern the next two steps, the three lowest the next three, etc. No bits further left intervene. This is quite huge: if a sequence reaches a lower number in l steps, it's exactly the tail of length l which is responsible. All numbers sharing that same tail will have the identical rise and fall pattern and also stop, i.e. reach a lower number in l steps.

This is by definition true for a final '0'. For '1' it isn't, so we need to try both a '0' and a '1' in front of it. Turns out '01' numbers always end in two steps. For '11' it can't be decided, so we need to explore both '011' and '111'. Both can't be decided, so we need to explore '0011', '1011', '0111' and '1111'. Again all numbers ending in '0011' get reduced in 4 steps. For the other three branches of our exploration tree, we must again add '0' and '1' in front of them. Now '01011' and '10111' get reduced in 5 steps.

Leading 0-bits are significant because within numbers ending in that tail, they're actually inner 0-bits. Because the last l bits predict the next l steps, either all numbers ending in a tail stop – or none do. This is illustrated by the diagonal, which delimits, as per the automaton above, the bits that influence the next steps. The 0..3 are what's prepended to each tail, just to show it doesn't matter what precedes. Add any tails you want to try (except '0' or '01' which would need special handling) as parameters. The colours (people with impairment may adapt their system, terminal, or browser) are explained below. The last output illustrates how quickly a wide gap of 0-bits melts – but also, even before a carry bit enters from the right, how fast isolated bits grow. This is hardly a one-liner but does profit from pl, without which it'd be rather longer. This gets the job done quick&dirty, rather than elegantly, sorry:

pl -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0..3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $p = 85 - $l; echo "-" x $m if $ARGIND > 1; $m = 3;
    while( 1 ) {
        echo qw(\\ / +)[$b], Form( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 85;
    }' 0011 01011 10111 1111100111 000000001111111111
pl -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0..3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $p = 85 - $l; e "-" x $m if $I > 1; $m = 3;
    while( 1 ) {
        e qw(\\ / +)[$b], F( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 85;
    }' 0011 01011 10111 1111100111 000000001111111111
+                    3                                                             \0011
/                    5                                                              \101
/                    8                                                             10\00
\                    4                                                              10\0
\                    2                                                               10\
---
+                   19                                                            1\0011
/                   29                                                            11\101
/                   44                                                           1011\00
\                   22                                                            1011\0
\                   11                                                             1011\
---
+                   35                                                           10\0011
/                   53                                                           110\101
/                   80                                                          10100\00
\                   40                                                           10100\0
\                   20                                                            10100\
---
+                   51                                                           11\0011
/                   77                                                          1001\101
/                  116                                                          11101\00
\                   58                                                           11101\0
\                   29                                                            11101\
---------
+                   11                                                            \01011
/                   17                                                            1\0001
/                   26                                                            11\010
\                   13                                                             11\01
/                   20                                                            1010\0
\                   10                                                             1010\
---
+                   43                                                           1\01011
/                   65                                                          100\0001
/                   98                                                          1100\010
\                   49                                                           1100\01
/                   74                                                          100101\0
\                   37                                                           100101\
---
+                   75                                                          10\01011
/                  113                                                          111\0001
/                  170                                                         10101\010
\                   85                                                          10101\01
/                  128                                                         1000000\0
\                   64                                                          1000000\
---
+                  107                                                          11\01011
/                  161                                                         1010\0001
/                  242                                                         11110\010
\                  121                                                          11110\01
/                  182                                                         1011011\0
\                   91                                                          1011011\
---------
+                   23                                                            \10111
/                   35                                                           10\0011
/                   53                                                           110\101
/                   80                                                          10100\00
\                   40                                                           10100\0
\                   20                                                            10100\
---
+                   55                                                           1\10111
/                   83                                                          101\0011
/                  125                                                          1111\101
/                  188                                                         101111\00
\                   94                                                          101111\0
\                   47                                                           101111\
---
+                   87                                                          10\10111
/                  131                                                         1000\0011
/                  197                                                         11000\101
/                  296                                                        1001010\00
\                  148                                                         1001010\0
\                   74                                                          1001010\
---
+                  119                                                          11\10111
/                  179                                                         1011\0011
/                  269                                                        100001\101
/                  404                                                        1100101\00
\                  202                                                         1100101\0
\                  101                                                          1100101\
---------
+                  999                                                       \1111100111
/                 1499                                                      10\111011011
/                 2249                                                     1000\11001001
/                 3374                                                     11010\0101110
\                 1687                                                      11010\010111
/                 2531                                                     1001111\00011
/                 3797                                                     11101101\0101
/                 5696                                                    1011001000\000
\                 2848                                                     1011001000\00
\                 1424                                                      1011001000\0
\                  712                                                       1011001000\
---
+                 2023                                                      1\1111100111
/                 3035                                                     101\111011011
/                 4553                                                    10001\11001001
/                 6830                                                    110101\0101110
\                 3415                                                     110101\010111
/                 5123                                                    10100000\00011
/                 7685                                                    111100000\0101
/                11528                                                   10110100001\000
\                 5764                                                    10110100001\00
\                 2882                                                     10110100001\0
\                 1441                                                      10110100001\
---
+                 3047                                                     10\1111100111
/                 4571                                                    1000\111011011
/                 6857                                                    11010\11001001
/                10286                                                   1010000\0101110
\                 5143                                                    1010000\010111
/                 7715                                                    11110001\00011
/                11573                                                   1011010011\0101
/                17360                                                  100001111010\000
\                 8680                                                   100001111010\00
\                 4340                                                    100001111010\0
\                 2170                                                     100001111010\
---
+                 4071                                                     11\1111100111
/                 6107                                                    1011\111011011
/                 9161                                                   100011\11001001
/                13742                                                   1101011\0101110
\                 6871                                                    1101011\010111
/                10307                                                   101000010\00011
/                15461                                                   1111000110\0101
/                23192                                                  101101010011\000
\                11596                                                   101101010011\00
\                 5798                                                    101101010011\0
\                 2899                                                     101101010011\
---------
+                 1023                                               \000000001111111111
/                 1535                                                \00000010111111111
/                 2303                                                 \0000100011111111
/                 3455                                                  \000110101111111
/                 5183                                                   \01010000111111
/                 7775                                                    \1111001011111
/                11663                                                   10\110110001111
/                17495                                                  1000\10001010111
/                26243                                                  11001\1010000011
/                39365                                                 1001100\111000101
/                59048                                                 11100110\10101000
\                29524                                                  11100110\1010100
\                14762                                                   11100110\101010
\                 7381                                                    11100110\10101
/                11072                                                   1010110100\0000
\                 5536                                                    1010110100\000
\                 2768                                                     1010110100\00
\                 1384                                                      1010110100\0
\                  692                                                       1010110100\
---
+               263167                                              1\000000001111111111
/               394751                                              11\00000010111111111
/               592127                                             1001\0000100011111111
/               888191                                             11011\000110101111111
/              1332287                                            1010001\01010000111111
/              1998431                                            11110011\1111001011111
/              2997647                                           1011011011\110110001111
/              4496471                                          100010010011\10001010111
/              6744707                                          1100110111010\1010000011
/             10117061                                         100110100101111\111000101
/             15175592                                         1110011110001111\10101000
\              7587796                                          1110011110001111\1010100
\              3793898                                           1110011110001111\101010
\              1896949                                            1110011110001111\10101
/              2845424                                           101011011010101111\0000
\              1422712                                            101011011010101111\000
\               711356                                             101011011010101111\00
\               355678                                              101011011010101111\0
\               177839                                               101011011010101111\
---
+               525311                                             10\000000001111111111
/               787967                                             110\00000010111111111
/              1181951                                            10010\0000100011111111
/              1772927                                            110110\000110101111111
/              2659391                                           10100010\01010000111111
/              3989087                                           111100110\1111001011111
/              5983631                                          10110110100\110110001111
/              8975447                                         1000100011110\10001010111
/             13463171                                         11001101011011\1010000011
/             20194757                                        1001101000010010\111000101
/             30292136                                        11100111000111000\10101000
\             15146068                                         11100111000111000\1010100
\              7573034                                          11100111000111000\101010
\              3786517                                           11100111000111000\10101
/              5679776                                          1010110101010101010\0000
\              2839888                                           1010110101010101010\000
\              1419944                                            1010110101010101010\00
\               709972                                             1010110101010101010\0
\               354986                                              1010110101010101010\
---
+               787455                                             11\000000001111111111
/              1181183                                            1001\00000010111111111
/              1771775                                            11011\0000100011111111
/              2657663                                           1010001\000110101111111
/              3986495                                           11110011\01010000111111
/              5979743                                          1011011001\1111001011111
/              8969615                                         100010001101\110110001111
/             13454423                                         1100110101001\10001010111
/             20181635                                        100110011111100\1010000011
/             30272453                                        1110011011110101\111000101
/             45408680                                       101011010011100001\10101000
\             22704340                                        101011010011100001\1010100
\             11352170                                         101011010011100001\101010
\              5676085                                          101011010011100001\10101
/              8514128                                         10000001111010100101\0000
\              4257064                                          10000001111010100101\000
\              2128532                                           10000001111010100101\00
\              1064266                                            10000001111010100101\0
\               532133                                             10000001111010100101\

Like for other pl examples, hover (or tap) near the play button to pop out the result and use the veggie-burger menu to toggle many-line display and short and/or long form. The blue sidelines show the structure and act as breadcrumbs: You can hover, click or bookmark them.

Tilting the diagonal, so that the shifts right go straight down, gives a rather different perspective. Throw in the explosive 27, stretched to l = 59, where it finally becomes a Good tail. We see that several longer series of 1-bits appear at the end, each time jazzing the sequence upwards. This needs bignum (which may need turning off upgrade, pending Perl issue #21370.) because the last three evolve beyond 64 bits:

pl -Mbigint -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0, 1, 2, 3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $i = 63 + $l; $p = 64 - $l; echo "-" x $m if $ARGIND > 1; $m = 3;
    while( 1 ) {
        echo qw(\\ / +)[$b], Form( "%21s%*s", $_, --$i, $_->to_bin ) =~ s/.{83}\K( *)/"|" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 64;
    }' 0011 01011 10111 1111100111 000000001111111111 \
    00000000000000000000000000000000000000000000000000000011011
pl -Mbigint -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0, 1, 2, 3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $i = 63 + $l; $p = 64 - $l; e "-" x $m if $I > 1; $m = 3;
    while( 1 ) {
        e qw(\\ / +)[$b], F( "%21s%*s", $_, --$i, $_->to_bin ) =~ s/.{83}\K( *)/"|" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 64;
    }' 0011 01011 10111 1111100111 000000001111111111 \
    00000000000000000000000000000000000000000000000000000011011
+                     3                                                              |0011
/                     5                                                              |101
/                     8                                                            10|00
\                     4                                                            10|0
\                     2                                                            10|
---
+                    19                                                             1|0011
/                    29                                                            11|101
/                    44                                                          1011|00
\                    22                                                          1011|0
\                    11                                                          1011|
---
+                    35                                                            10|0011
/                    53                                                           110|101
/                    80                                                         10100|00
\                    40                                                         10100|0
\                    20                                                         10100|
---
+                    51                                                            11|0011
/                    77                                                          1001|101
/                   116                                                         11101|00
\                    58                                                         11101|0
\                    29                                                         11101|
---------
+                    11                                                              |01011
/                    17                                                             1|0001
/                    26                                                            11|010
\                    13                                                            11|01
/                    20                                                          1010|0
\                    10                                                          1010|
---
+                    43                                                             1|01011
/                    65                                                           100|0001
/                    98                                                          1100|010
\                    49                                                          1100|01
/                    74                                                        100101|0
\                    37                                                        100101|
---
+                    75                                                            10|01011
/                   113                                                           111|0001
/                   170                                                         10101|010
\                    85                                                         10101|01
/                   128                                                       1000000|0
\                    64                                                       1000000|
---
+                   107                                                            11|01011
/                   161                                                          1010|0001
/                   242                                                         11110|010
\                   121                                                         11110|01
/                   182                                                       1011011|0
\                    91                                                       1011011|
---------
+                    23                                                              |10111
/                    35                                                            10|0011
/                    53                                                           110|101
/                    80                                                         10100|00
\                    40                                                         10100|0
\                    20                                                         10100|
---
+                    55                                                             1|10111
/                    83                                                           101|0011
/                   125                                                          1111|101
/                   188                                                        101111|00
\                    94                                                        101111|0
\                    47                                                        101111|
---
+                    87                                                            10|10111
/                   131                                                          1000|0011
/                   197                                                         11000|101
/                   296                                                       1001010|00
\                   148                                                       1001010|0
\                    74                                                       1001010|
---
+                   119                                                            11|10111
/                   179                                                          1011|0011
/                   269                                                        100001|101
/                   404                                                       1100101|00
\                   202                                                       1100101|0
\                   101                                                       1100101|
---------
+                   999                                                              |1111100111
/                  1499                                                            10|111011011
/                  2249                                                          1000|11001001
/                  3374                                                         11010|0101110
\                  1687                                                         11010|010111
/                  2531                                                       1001111|00011
/                  3797                                                      11101101|0101
/                  5696                                                    1011001000|000
\                  2848                                                    1011001000|00
\                  1424                                                    1011001000|0
\                   712                                                    1011001000|
---
+                  2023                                                             1|1111100111
/                  3035                                                           101|111011011
/                  4553                                                         10001|11001001
/                  6830                                                        110101|0101110
\                  3415                                                        110101|010111
/                  5123                                                      10100000|00011
/                  7685                                                     111100000|0101
/                 11528                                                   10110100001|000
\                  5764                                                   10110100001|00
\                  2882                                                   10110100001|0
\                  1441                                                   10110100001|
---
+                  3047                                                            10|1111100111
/                  4571                                                          1000|111011011
/                  6857                                                         11010|11001001
/                 10286                                                       1010000|0101110
\                  5143                                                       1010000|010111
/                  7715                                                      11110001|00011
/                 11573                                                    1011010011|0101
/                 17360                                                  100001111010|000
\                  8680                                                  100001111010|00
\                  4340                                                  100001111010|0
\                  2170                                                  100001111010|
---
+                  4071                                                            11|1111100111
/                  6107                                                          1011|111011011
/                  9161                                                        100011|11001001
/                 13742                                                       1101011|0101110
\                  6871                                                       1101011|010111
/                 10307                                                     101000010|00011
/                 15461                                                    1111000110|0101
/                 23192                                                  101101010011|000
\                 11596                                                  101101010011|00
\                  5798                                                  101101010011|0
\                  2899                                                  101101010011|
---------
+                  1023                                                              |000000001111111111
/                  1535                                                              |00000010111111111
/                  2303                                                              |0000100011111111
/                  3455                                                              |000110101111111
/                  5183                                                              |01010000111111
/                  7775                                                              |1111001011111
/                 11663                                                            10|110110001111
/                 17495                                                          1000|10001010111
/                 26243                                                         11001|1010000011
/                 39365                                                       1001100|111000101
/                 59048                                                      11100110|10101000
\                 29524                                                      11100110|1010100
\                 14762                                                      11100110|101010
\                  7381                                                      11100110|10101
/                 11072                                                    1010110100|0000
\                  5536                                                    1010110100|000
\                  2768                                                    1010110100|00
\                  1384                                                    1010110100|0
\                   692                                                    1010110100|
---
+                263167                                                             1|000000001111111111
/                394751                                                            11|00000010111111111
/                592127                                                          1001|0000100011111111
/                888191                                                         11011|000110101111111
/               1332287                                                       1010001|01010000111111
/               1998431                                                      11110011|1111001011111
/               2997647                                                    1011011011|110110001111
/               4496471                                                  100010010011|10001010111
/               6744707                                                 1100110111010|1010000011
/              10117061                                               100110100101111|111000101
/              15175592                                              1110011110001111|10101000
\               7587796                                              1110011110001111|1010100
\               3793898                                              1110011110001111|101010
\               1896949                                              1110011110001111|10101
/               2845424                                            101011011010101111|0000
\               1422712                                            101011011010101111|000
\                711356                                            101011011010101111|00
\                355678                                            101011011010101111|0
\                177839                                            101011011010101111|
---
+                525311                                                            10|000000001111111111
/                787967                                                           110|00000010111111111
/               1181951                                                         10010|0000100011111111
/               1772927                                                        110110|000110101111111
/               2659391                                                      10100010|01010000111111
/               3989087                                                     111100110|1111001011111
/               5983631                                                   10110110100|110110001111
/               8975447                                                 1000100011110|10001010111
/              13463171                                                11001101011011|1010000011
/              20194757                                              1001101000010010|111000101
/              30292136                                             11100111000111000|10101000
\              15146068                                             11100111000111000|1010100
\               7573034                                             11100111000111000|101010
\               3786517                                             11100111000111000|10101
/               5679776                                           1010110101010101010|0000
\               2839888                                           1010110101010101010|000
\               1419944                                           1010110101010101010|00
\                709972                                           1010110101010101010|0
\                354986                                           1010110101010101010|
---
+                787455                                                            11|000000001111111111
/               1181183                                                          1001|00000010111111111
/               1771775                                                         11011|0000100011111111
/               2657663                                                       1010001|000110101111111
/               3986495                                                      11110011|01010000111111
/               5979743                                                    1011011001|1111001011111
/               8969615                                                  100010001101|110110001111
/              13454423                                                 1100110101001|10001010111
/              20181635                                               100110011111100|1010000011
/              30272453                                              1110011011110101|111000101
/              45408680                                            101011010011100001|10101000
\              22704340                                            101011010011100001|1010100
\              11352170                                            101011010011100001|101010
\               5676085                                            101011010011100001|10101
/               8514128                                          10000001111010100101|0000
\               4257064                                          10000001111010100101|000
\               2128532                                          10000001111010100101|00
\               1064266                                          10000001111010100101|0
\                532133                                          10000001111010100101|
---------
+                    27                                                              |00000000000000000000000000000000000000000000000000000011011
/                    41                                                              |0000000000000000000000000000000000000000000000000000101001
/                    62                                                              |000000000000000000000000000000000000000000000000000111110
\                    31                                                              |00000000000000000000000000000000000000000000000000011111
/                    47                                                              |0000000000000000000000000000000000000000000000000101111
/                    71                                                              |000000000000000000000000000000000000000000000001000111
/                   107                                                              |00000000000000000000000000000000000000000000001101011
/                   161                                                              |0000000000000000000000000000000000000000000010100001
/                   242                                                              |000000000000000000000000000000000000000000011110010
\                   121                                                              |00000000000000000000000000000000000000000001111001
/                   182                                                              |0000000000000000000000000000000000000000010110110
\                    91                                                              |000000000000000000000000000000000000000001011011
/                   137                                                              |00000000000000000000000000000000000000010001001
/                   206                                                              |0000000000000000000000000000000000000011001110
\                   103                                                              |000000000000000000000000000000000000001100111
/                   155                                                              |00000000000000000000000000000000000010011011
/                   233                                                              |0000000000000000000000000000000000011101001
/                   350                                                              |000000000000000000000000000000000101011110
\                   175                                                              |00000000000000000000000000000000010101111
/                   263                                                              |0000000000000000000000000000000100000111
/                   395                                                              |000000000000000000000000000000110001011
/                   593                                                              |00000000000000000000000000001001010001
/                   890                                                              |0000000000000000000000000001101111010
\                   445                                                              |000000000000000000000000000110111101
/                   668                                                              |00000000000000000000000001010011100
\                   334                                                              |0000000000000000000000000101001110
\                   167                                                              |000000000000000000000000010100111
/                   251                                                              |00000000000000000000000011111011
/                   377                                                              |0000000000000000000000101111001
/                   566                                                              |000000000000000000001000110110
\                   283                                                              |00000000000000000000100011011
/                   425                                                              |0000000000000000000110101001
/                   638                                                              |000000000000000001001111110
\                   319                                                              |00000000000000000100111111
/                   479                                                              |0000000000000000111011111
/                   719                                                              |000000000000001011001111
/                  1079                                                              |00000000000010000110111
/                  1619                                                              |0000000000011001010011
/                  2429                                                              |000000000100101111101
/                  3644                                                              |00000000111000111100
\                  1822                                                              |0000000011100011110
\                   911                                                              |000000001110001111
/                  1367                                                              |00000010101010111
/                  2051                                                              |0000100000000011
/                  3077                                                              |000110000000101
/                  4616                                                              |01001000001000
\                  2308                                                              |0100100000100
\                  1154                                                              |010010000010
\                   577                                                              |01001000001
/                   866                                                              |1101100010
\                   433                                                              |110110001
/                   650                                                            10|10001010
\                   325                                                            10|1000101
/                   488                                                           111|101000
\                   244                                                           111|10100
\                   122                                                           111|1010
\                    61                                                           111|101
/                    92                                                         10111|00
\                    46                                                         10111|0
\                    23                                                         10111|
---
+    576460752303423515                                                             1|00000000000000000000000000000000000000000000000000000011011
/    864691128455135273                                                            11|0000000000000000000000000000000000000000000000000000101001
/   1297036692682702910                                                          1001|000000000000000000000000000000000000000000000000000111110
\    648518346341351455                                                          1001|00000000000000000000000000000000000000000000000000011111
/    972777519512027183                                                         11011|0000000000000000000000000000000000000000000000000101111
/   1459166279268040775                                                       1010001|000000000000000000000000000000000000000000000001000111
/   2188749418902061163                                                      11110011|00000000000000000000000000000000000000000000001101011
/   3283124128353091745                                                    1011011001|0000000000000000000000000000000000000000000010100001
/   4924686192529637618                                                  100010001011|000000000000000000000000000000000000000000011110010
\   2462343096264818809                                                  100010001011|00000000000000000000000000000000000000000001111001
/   3693514644397228214                                                 1100110100001|0000000000000000000000000000000000000000010110110
\   1846757322198614107                                                 1100110100001|000000000000000000000000000000000000000001011011
/   2770135983297921161                                               100110011100011|00000000000000000000000000000000000000010001001
/   4155203974946881742                                              1110011010101001|0000000000000000000000000000000000000011001110
\   2077601987473440871                                              1110011010101001|000000000000000000000000000000000000001100111
/   3116402981210161307                                            101011001111111011|00000000000000000000000000000000000010011011
/   4674604471815241961                                          10000001101111110001|0000000000000000000000000000000000011101001
/   7011906707722862942                                         110000101001111010011|000000000000000000000000000000000101011110
\   3505953353861431471                                         110000101001111010011|00000000000000000000000000000000010101111
/   5258930030792147207                                       10010001111101101111001|0000000000000000000000000000000100000111
/   7888395046188220811                                      110110101111001001101011|000000000000000000000000000000110001011
/  11832592569282331217                                    10100100001101011101000001|00000000000000000000000000001001010001
/  17748888853923496826                                   111101100101000010111000011|0000000000000000000000000001101111010
\   8874444426961748413                                   111101100101000010111000011|000000000000000000000000000110111101
/  13311666640442622620                                 10111000101111001000101001001|00000000000000000000000001010011100
\   6655833320221311310                                 10111000101111001000101001001|0000000000000000000000000101001110
\   3327916660110655655                                 10111000101111001000101001001|000000000000000000000000010100111
/   4991874990165983483                               1000101010001101011001111011011|00000000000000000000000011111011
/   7487812485248975225                              11001111110101000001101110010001|0000000000000000000000101111001
/  11231718727873462838                            1001101111011111000101001010110011|000000000000000000001000110110
\   5615859363936731419                            1001101111011111000101001010110011|00000000000000000000100011011
/   8423789045905097129                           11101001110011101001111100000011001|0000000000000000000110101001
/  12635683568857645694                         1010111101011010111101110100001001011|000000000000000001001111110
\   6317841784428822847                         1010111101011010111101110100001001011|00000000000000000100111111
/   9476762676643234271                       100000111000010000111001011100011100001|0000000000000000111011111
/  14215144014964851407                      1100010101000110010101100010101010100011|000000000000001011001111
/  21322716022447277111                    100100111111010011000000100111111111101001|00000000000010000110111
/  31984074033670915667                   1101110111101111001000001110111111110111011|0000000000011001010011
/  47976111050506373501                 101001100111001101011000101100111111100110001|000000000100101111101
/  71964166575759560252                1111100110101101000001010000110111110110010011|00000000111000111100
\  35982083287879780126                1111100110101101000001010000110111110110010011|0000000011100011110
\  17991041643939890063                1111100110101101000001010000110111110110010011|000000001110001111
/  26986562465909835095              101110110100000111000011110010100111100010111001|00000010101010111
/  40479843698864752643            10001100011100010101001011010111110110101000101011|0000100000000011
/  60719765548297128965           110100101010100111111100010000111100011111010000001|000110000000101
/  91079648322445693448         10011101111111110111110100110010110101011101110000011|01001000001000
\  45539824161222846724         10011101111111110111110100110010110101011101110000011|0100100000100
\  22769912080611423362         10011101111111110111110100110010110101011101110000011|010010000010
\  11384956040305711681         10011101111111110111110100110010110101011101110000011|01001000001
/  17077434060458567522        111011001111111100111011110011000100000011001010001001|1101100010
\   8538717030229283761        111011001111111100111011110011000100000011001010001001|110110001
/  12808075545343925642      10110001101111110110110011011001001100001001011110011101|10001010
\   6404037772671962821      10110001101111110110110011011001001100001001011110011101|1000101
/   9606056659007944232    1000010101001111100100011010001011100100011100011011011000|101000
\   4803028329503972116    1000010101001111100100011010001011100100011100011011011000|10100
\   2401514164751986058    1000010101001111100100011010001011100100011100011011011000|1010
\   1200757082375993029    1000010101001111100100011010001011100100011100011011011000|101
/   1801135623563989544   11000111111101110101101001110100010101101010101010010001010|00
\    900567811781994772   11000111111101110101101001110100010101101010101010010001010|0
\    450283905890997386   11000111111101110101101001110100010101101010101010010001010|
---
+   1152921504606847003                                                            10|00000000000000000000000000000000000000000000000000000011011
/   1729382256910270505                                                           110|0000000000000000000000000000000000000000000000000000101001
/   2594073385365405758                                                         10010|000000000000000000000000000000000000000000000000000111110
\   1297036692682702879                                                         10010|00000000000000000000000000000000000000000000000000011111
/   1945555039024054319                                                        110110|0000000000000000000000000000000000000000000000000101111
/   2918332558536081479                                                      10100010|000000000000000000000000000000000000000000000001000111
/   4377498837804122219                                                     111100110|00000000000000000000000000000000000000000000001101011
/   6566248256706183329                                                   10110110010|0000000000000000000000000000000000000000000010100001
/   9849372385059274994                                                 1000100010110|000000000000000000000000000000000000000000011110010
\   4924686192529637497                                                 1000100010110|00000000000000000000000000000000000000000001111001
/   7387029288794456246                                                11001101000010|0000000000000000000000000000000000000000010110110
\   3693514644397228123                                                11001101000010|000000000000000000000000000000000000000001011011
/   5540271966595842185                                              1001100111000110|00000000000000000000000000000000000000010001001
/   8310407949893763278                                             11100110101010010|0000000000000000000000000000000000000011001110
\   4155203974946881639                                             11100110101010010|000000000000000000000000000000000000001100111
/   6232805962420322459                                           1010110011111110110|00000000000000000000000000000000000010011011
/   9349208943630483689                                         100000011011111100010|0000000000000000000000000000000000011101001
/  14023813415445725534                                        1100001010011110100110|000000000000000000000000000000000101011110
\   7011906707722862767                                        1100001010011110100110|00000000000000000000000000000000010101111
/  10517860061584294151                                      100100011111011011110010|0000000000000000000000000000000100000111
/  15776790092376441227                                     1101101011110010011010110|000000000000000000000000000000110001011
/  23665185138564661841                                   101001000011010111010000010|00000000000000000000000000001001010001
/  35497777707846992762                                  1111011001010000101110000110|0000000000000000000000000001101111010
\  17748888853923496381                                  1111011001010000101110000110|000000000000000000000000000110111101
/  26623333280885244572                                101110001011110010001010010010|00000000000000000000000001010011100
\  13311666640442622286                                101110001011110010001010010010|0000000000000000000000000101001110
\   6655833320221311143                                101110001011110010001010010010|000000000000000000000000010100111
/   9983749980331966715                              10001010100011010110011110110110|00000000000000000000000011111011
/  14975624970497950073                             110011111101010000011011100100010|0000000000000000000000101111001
/  22463437455746925110                           10011011110111110001010010101100110|000000000000000000001000110110
\  11231718727873462555                           10011011110111110001010010101100110|00000000000000000000100011011
/  16847578091810193833                          111010011100111010011111000000110010|0000000000000000000110101001
/  25271367137715290750                        10101111010110101111011101000010010110|000000000000000001001111110
\  12635683568857645375                        10101111010110101111011101000010010110|00000000000000000100111111
/  18953525353286468063                      1000001110000100001110010111000111000010|0000000000000000111011111
/  28430288029929702095                     11000101010001100101011000101010101000110|000000000000001011001111
/  42645432044894553143                   1001001111110100110000001001111111111010010|00000000000010000110111
/  63968148067341829715                  11011101111011110010000011101111111101110110|0000000000011001010011
/  95952222101012744573                1010011001110011010110001011001111111001100010|000000000100101111101
/ 143928333151519116860               11111001101011010000010100001101111101100100110|00000000111000111100
\  71964166575759558430               11111001101011010000010100001101111101100100110|0000000011100011110
\  35982083287879779215               11111001101011010000010100001101111101100100110|000000001110001111
/  53973124931819668823             1011101101000001110000111100101001111000101110010|00000010101010111
/  80959687397729503235           100011000111000101010010110101111101101010001010110|0000100000000011
/ 121439531096594254853          1101001010101001111111000100001111000111110100000010|000110000000101
/ 182159296644891382280        100111011111111101111101001100101101010111011100000110|01001000001000
\  91079648322445691140        100111011111111101111101001100101101010111011100000110|0100100000100
\  45539824161222845570        100111011111111101111101001100101101010111011100000110|010010000010
\  22769912080611422785        100111011111111101111101001100101101010111011100000110|01001000001
/  34154868120917134178       1110110011111111001110111100110001000000110010100010010|1101100010
\  17077434060458567089       1110110011111111001110111100110001000000110010100010010|110110001
/  25616151090687850634     101100011011111101101100110110010011000010010111100111000|10001010
\  12808075545343925317     101100011011111101101100110110010011000010010111100111000|1000101
/  19212113318015887976   10000101010011111001000110100010111001000111000110110101001|101000
\   9606056659007943988   10000101010011111001000110100010111001000111000110110101001|10100
\   4803028329503971994   10000101010011111001000110100010111001000111000110110101001|1010
\   2401514164751985997   10000101010011111001000110100010111001000111000110110101001|101
/   3602271247127978996  110001111111011101011010011101000101011010101010100011111101|00
\   1801135623563989498  110001111111011101011010011101000101011010101010100011111101|0
\    900567811781994749  110001111111011101011010011101000101011010101010100011111101|
---
+   1729382256910270491                                                            11|00000000000000000000000000000000000000000000000000000011011
/   2594073385365405737                                                          1001|0000000000000000000000000000000000000000000000000000101001
/   3891110078048108606                                                         11011|000000000000000000000000000000000000000000000000000111110
\   1945555039024054303                                                         11011|00000000000000000000000000000000000000000000000000011111
/   2918332558536081455                                                       1010001|0000000000000000000000000000000000000000000000000101111
/   4377498837804122183                                                      11110011|000000000000000000000000000000000000000000000001000111
/   6566248256706183275                                                    1011011001|00000000000000000000000000000000000000000000001101011
/   9849372385059274913                                                  100010001011|0000000000000000000000000000000000000000000010100001
/  14774058577588912370                                                 1100110100001|000000000000000000000000000000000000000000011110010
\   7387029288794456185                                                 1100110100001|00000000000000000000000000000000000000000001111001
/  11080543933191684278                                               100110011100011|0000000000000000000000000000000000000000010110110
\   5540271966595842139                                               100110011100011|000000000000000000000000000000000000000001011011
/   8310407949893763209                                              1110011010101001|00000000000000000000000000000000000000010001001
/  12465611924840644814                                            101011001111111011|0000000000000000000000000000000000000011001110
\   6232805962420322407                                            101011001111111011|000000000000000000000000000000000000001100111
/   9349208943630483611                                          10000001101111110001|00000000000000000000000000000000000010011011
/  14023813415445725417                                         110000101001111010011|0000000000000000000000000000000000011101001
/  21035720123168588126                                       10010001111101101111001|000000000000000000000000000000000101011110
\  10517860061584294063                                       10010001111101101111001|00000000000000000000000000000000010101111
/  15776790092376441095                                      110110101111001001101011|0000000000000000000000000000000100000111
/  23665185138564661643                                    10100100001101011101000001|000000000000000000000000000000110001011
/  35497777707846992465                                   111101100101000010111000011|00000000000000000000000000001001010001
/  53246666561770488698                                 10111000101111001000101001001|0000000000000000000000000001101111010
\  26623333280885244349                                 10111000101111001000101001001|000000000000000000000000000110111101
/  39934999921327866524                               1000101010001101011001111011011|00000000000000000000000001010011100
\  19967499960663933262                               1000101010001101011001111011011|0000000000000000000000000101001110
\   9983749980331966631                               1000101010001101011001111011011|000000000000000000000000010100111
/  14975624970497949947                              11001111110101000001101110010001|00000000000000000000000011111011
/  22463437455746924921                            1001101111011111000101001010110011|0000000000000000000000101111001
/  33695156183620387382                           11101001110011101001111100000011001|000000000000000000001000110110
\  16847578091810193691                           11101001110011101001111100000011001|00000000000000000000100011011
/  25271367137715290537                         1010111101011010111101110100001001011|0000000000000000000110101001
/  37907050706572935806                       100000111000010000111001011100011100001|000000000000000001001111110
\  18953525353286467903                       100000111000010000111001011100011100001|00000000000000000100111111
/  28430288029929701855                      1100010101000110010101100010101010100011|0000000000000000111011111
/  42645432044894552783                    100100111111010011000000100111111111101001|000000000000001011001111
/  63968148067341829175                   1101110111101111001000001110111111110111011|00000000000010000110111
/  95952222101012743763                 101001100111001101011000101100111111100110001|0000000000011001010011
/ 143928333151519115645                1111100110101101000001010000110111110110010011|000000000100101111101
/ 215892499727278673468              101110110100000111000011110010100111100010111001|00000000111000111100
\ 107946249863639336734              101110110100000111000011110010100111100010111001|0000000011100011110
\  53973124931819668367              101110110100000111000011110010100111100010111001|000000001110001111
/  80959687397729502551            10001100011100010101001011010111110110101000101011|00000010101010111
/ 121439531096594253827           110100101010100111111100010000111100011111010000001|0000100000000011
/ 182159296644891380741         10011101111111110111110100110010110101011101110000011|000110000000101
/ 273238944967337071112        111011001111111100111011110011000100000011001010001001|01001000001000
\ 136619472483668535556        111011001111111100111011110011000100000011001010001001|0100100000100
\  68309736241834267778        111011001111111100111011110011000100000011001010001001|010010000010
\  34154868120917133889        111011001111111100111011110011000100000011001010001001|01001000001
/  51232302181375700834      10110001101111110110110011011001001100001001011110011011|1101100010
\  25616151090687850417      10110001101111110110110011011001001100001001011110011011|110110001
/  38424226636031775626    1000010101001111100100011010001011100100011100011011010011|10001010
\  19212113318015887813    1000010101001111100100011010001011100100011100011011010011|1000101
/  28818169977023831720   11000111111101110101101001110100010101101010101010001111010|101000
\  14409084988511915860   11000111111101110101101001110100010101101010101010001111010|10100
\   7204542494255957930   11000111111101110101101001110100010101101010101010001111010|1010
\   3602271247127978965   11000111111101110101101001110100010101101010101010001111010|101
/   5403406870691968448 1001010111111001100000111101011101000000111111111110101110000|00
\   2701703435345984224 1001010111111001100000111101011101000000111111111110101110000|0
\   1350851717672992112 1001010111111001100000111101011101000000111111111110101110000|

We can also tilt the other way, making the carry bit go straight down. There's a vertical left edge when there is a carry at the beginning, else it recedes. No matter which way we tilt, it's never clear cut because the automaton still says that there are three inputs. That includes one from the left, which with this tilt seems to come from two positions to the left.

pl -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0..3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $i = 63; $p = 85 - $l; $o = -1; echo "-" x $m if $ARGIND > 1; $m = 3;
    while( 1 ) {
        $po = $p + ++$o;
        echo qw(\\ / +)[$b], Form( "%20d %1:*b", $_, ++$i ) =~ s/.{$po}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 85;
    }' 0011 01011 10111 1111100111 000000001111111111
pl -oA '$a = eval "0b$_"; $l = length; -$l, map $a|($_<<$l), 0..3' \
    'if( $_ < 0 ) { $l = -$_; $m = 9; next }
    $n = $_; $b = 2; $i = 63; $p = 85 - $l; $o = -1; e "-" x $m if $I > 1; $m = 3;
    while( 1 ) {
        $po = $p + ++$o;
        e qw(\\ / +)[$b], F( "%20d %1:*b", $_, ++$i ) =~ s/.{$po}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        die "tail too short" if ++$p > 85;
    }' 0011 01011 10111 1111100111 000000001111111111
+                    3                                                             \0011
/                    5                                                               \101
/                    8                                                               10\00
\                    4                                                                 10\0
\                    2                                                                   10\
---
+                   19                                                            1\0011
/                   29                                                             11\101
/                   44                                                             1011\00
\                   22                                                               1011\0
\                   11                                                                 1011\
---
+                   35                                                           10\0011
/                   53                                                            110\101
/                   80                                                            10100\00
\                   40                                                              10100\0
\                   20                                                                10100\
---
+                   51                                                           11\0011
/                   77                                                           1001\101
/                  116                                                            11101\00
\                   58                                                              11101\0
\                   29                                                                11101\
---------
+                   11                                                            \01011
/                   17                                                             1\0001
/                   26                                                              11\010
\                   13                                                                11\01
/                   20                                                                1010\0
\                   10                                                                  1010\
---
+                   43                                                           1\01011
/                   65                                                           100\0001
/                   98                                                            1100\010
\                   49                                                              1100\01
/                   74                                                              100101\0
\                   37                                                                100101\
---
+                   75                                                          10\01011
/                  113                                                           111\0001
/                  170                                                           10101\010
\                   85                                                             10101\01
/                  128                                                             1000000\0
\                   64                                                               1000000\
---
+                  107                                                          11\01011
/                  161                                                          1010\0001
/                  242                                                           11110\010
\                  121                                                             11110\01
/                  182                                                             1011011\0
\                   91                                                               1011011\
---------
+                   23                                                            \10111
/                   35                                                            10\0011
/                   53                                                             110\101
/                   80                                                             10100\00
\                   40                                                               10100\0
\                   20                                                                 10100\
---
+                   55                                                           1\10111
/                   83                                                           101\0011
/                  125                                                            1111\101
/                  188                                                            101111\00
\                   94                                                              101111\0
\                   47                                                                101111\
---
+                   87                                                          10\10111
/                  131                                                          1000\0011
/                  197                                                           11000\101
/                  296                                                           1001010\00
\                  148                                                             1001010\0
\                   74                                                               1001010\
---
+                  119                                                          11\10111
/                  179                                                          1011\0011
/                  269                                                          100001\101
/                  404                                                           1100101\00
\                  202                                                             1100101\0
\                  101                                                               1100101\
---------
+                  999                                                       \1111100111
/                 1499                                                       10\111011011
/                 2249                                                       1000\11001001
/                 3374                                                        11010\0101110
\                 1687                                                          11010\010111
/                 2531                                                          1001111\00011
/                 3797                                                           11101101\0101
/                 5696                                                           1011001000\000
\                 2848                                                             1011001000\00
\                 1424                                                               1011001000\0
\                  712                                                                 1011001000\
---
+                 2023                                                      1\1111100111
/                 3035                                                      101\111011011
/                 4553                                                      10001\11001001
/                 6830                                                       110101\0101110
\                 3415                                                         110101\010111
/                 5123                                                         10100000\00011
/                 7685                                                          111100000\0101
/                11528                                                          10110100001\000
\                 5764                                                            10110100001\00
\                 2882                                                              10110100001\0
\                 1441                                                                10110100001\
---
+                 3047                                                     10\1111100111
/                 4571                                                     1000\111011011
/                 6857                                                      11010\11001001
/                10286                                                      1010000\0101110
\                 5143                                                        1010000\010111
/                 7715                                                         11110001\00011
/                11573                                                         1011010011\0101
/                17360                                                         100001111010\000
\                 8680                                                           100001111010\00
\                 4340                                                             100001111010\0
\                 2170                                                               100001111010\
---
+                 4071                                                     11\1111100111
/                 6107                                                     1011\111011011
/                 9161                                                     100011\11001001
/                13742                                                      1101011\0101110
\                 6871                                                        1101011\010111
/                10307                                                        101000010\00011
/                15461                                                         1111000110\0101
/                23192                                                         101101010011\000
\                11596                                                           101101010011\00
\                 5798                                                             101101010011\0
\                 2899                                                               101101010011\
---------
+                 1023                                               \000000001111111111
/                 1535                                                 \00000010111111111
/                 2303                                                   \0000100011111111
/                 3455                                                     \000110101111111
/                 5183                                                       \01010000111111
/                 7775                                                         \1111001011111
/                11663                                                         10\110110001111
/                17495                                                         1000\10001010111
/                26243                                                          11001\1010000011
/                39365                                                          1001100\111000101
/                59048                                                           11100110\10101000
\                29524                                                             11100110\1010100
\                14762                                                               11100110\101010
\                 7381                                                                 11100110\10101
/                11072                                                                 1010110100\0000
\                 5536                                                                   1010110100\000
\                 2768                                                                     1010110100\00
\                 1384                                                                       1010110100\0
\                  692                                                                         1010110100\
---
+               263167                                              1\000000001111111111
/               394751                                               11\00000010111111111
/               592127                                               1001\0000100011111111
/               888191                                                11011\000110101111111
/              1332287                                                1010001\01010000111111
/              1998431                                                 11110011\1111001011111
/              2997647                                                 1011011011\110110001111
/              4496471                                                 100010010011\10001010111
/              6744707                                                  1100110111010\1010000011
/             10117061                                                  100110100101111\111000101
/             15175592                                                   1110011110001111\10101000
\              7587796                                                     1110011110001111\1010100
\              3793898                                                       1110011110001111\101010
\              1896949                                                         1110011110001111\10101
/              2845424                                                         101011011010101111\0000
\              1422712                                                           101011011010101111\000
\               711356                                                             101011011010101111\00
\               355678                                                               101011011010101111\0
\               177839                                                                 101011011010101111\
---
+               525311                                             10\000000001111111111
/               787967                                              110\00000010111111111
/              1181951                                              10010\0000100011111111
/              1772927                                               110110\000110101111111
/              2659391                                               10100010\01010000111111
/              3989087                                                111100110\1111001011111
/              5983631                                                10110110100\110110001111
/              8975447                                                1000100011110\10001010111
/             13463171                                                 11001101011011\1010000011
/             20194757                                                 1001101000010010\111000101
/             30292136                                                  11100111000111000\10101000
\             15146068                                                    11100111000111000\1010100
\              7573034                                                      11100111000111000\101010
\              3786517                                                        11100111000111000\10101
/              5679776                                                        1010110101010101010\0000
\              2839888                                                          1010110101010101010\000
\              1419944                                                            1010110101010101010\00
\               709972                                                              1010110101010101010\0
\               354986                                                                1010110101010101010\
---
+               787455                                             11\000000001111111111
/              1181183                                             1001\00000010111111111
/              1771775                                              11011\0000100011111111
/              2657663                                              1010001\000110101111111
/              3986495                                               11110011\01010000111111
/              5979743                                               1011011001\1111001011111
/              8969615                                               100010001101\110110001111
/             13454423                                                1100110101001\10001010111
/             20181635                                                100110011111100\1010000011
/             30272453                                                 1110011011110101\111000101
/             45408680                                                 101011010011100001\10101000
\             22704340                                                   101011010011100001\1010100
\             11352170                                                     101011010011100001\101010
\              5676085                                                       101011010011100001\10101
/              8514128                                                       10000001111010100101\0000
\              4257064                                                         10000001111010100101\000
\              2128532                                                           10000001111010100101\00
\              1064266                                                             10000001111010100101\0
\               532133                                                               10000001111010100101\

Flagtail Fish

You'll have noticed the colouring of tails in the output. I cheated a bit because these are added not by pl but done while rendering the web page. Once we know how the sequence went, in hindsight we can colour tail bits according to what they will ultimately cause. That way the colour stripes show the evolution of neighbouring bits which reach the end as the same value. They're bold, when they match their final value. On any decent terminal emulator, you can pipe the output of any other command on this page through this to add colouring:

pl -ln 'if( /[01]$/ ) {
        unshift @a, $_;
    } else {
        @l = $b = 0;
        for( @a ) {
            if( /$b$/ ) { ++$l[0] } else { unshift @l, 1; $b ^= 1 }
            $c = 2 - $b; $d = $b; $l = length;
            for $x ( @l ) {
                s/($d+)/\e[1m$1\e[22m/g, s/^/\e[3${c}m/ for substr $_, $l -= $x, $x;
                $d ^= 1; $c ^= 3
            }
            $_ .= "\e[m";
        }
        say pop @a while @a; say;
    }'

You would want to get Collatz colouring automatically. Let's define a cpl command that you can substitute for pl in any of the other examples. Or even redefine pl itself (guarding against endless recursion), so you can run all examples unmodified. On most normal Shells, including on Windows, one of these will give you that, when replacing pl … with the command above this paragraph:

cpl() {
    pl "$@" |
        pl ...
}
pl() {
    perl -S pl "$@" |
        perl -S pl ...
}

"You're bad!" – "I need a 2nd opinion." – "You're ugly too!" 🐽

The Good, the Bad and the Ugly

More salient definitions: All tails of length l fall into three categories:

Good are all the tails that stop in l steps. I suffix them with '-' meaning till here: you only need to look that far from the end to know that all numbers with this tail stop.

Bad are all other tails that don't stop in l steps. I suffix them with '+' meaning longer tails need to be looked at to decide whether they'll stop. Leading spaces aren't quite like for the Good ones. There it means no need to explore deeper. Here one space means both next bit-values are part of a Bad tail, two spaces mean all four next 2-bit-values, etc. E.g., '100011011+' appears in the length 12 column below, meaning all eight possibilities to prepend three bits are Bad. And one of them, '011100011011+' appears in the length 17 column, meaning all 32 possibilities to prepend another five bits are Bad. In other words, in nine and twelve steps, these numbers' sequences rise to numbers that are more than eight and 32 times the originals. Thus, they're unstoppable within that inspected length.

If you need the actual expansion of those spaces into all separate tails, here's an example. This is piped, so you could pass in a whole file:

echo '   100011011+' |
    pl -nl 's/( +)/$l = length($1); "{" . join( ",", map Form( "%0${l}b" ), 0..2**$l-1 ) . "}"/e;
        say for glob'
echo '   100011011+' |
    pl -nl 's/( +)/$l = length($1); "{" . join( ",", map F( "%0${l}b" ), 0..2**$l-1 ) . "}"/e;
        say for glob'
000100011011+
001100011011+
010100011011+
011100011011+
100100011011+
101100011011+
110100011011+
111100011011+

Ugly are a subset of the Bad that are obvious just by looking at them. I suffix them with '*' (a screwed '+'). Probably the only pattern where this is so, are the tails of l = i + j, where j is the number of final 1-bits and 2i < (3/2)j (using a slightly stricter upper bound of 3n/2), or equivalently 2l < 3j. That's because the sequence will go straight up j times. Even if we thereafter halved i times, it wouldn't be enough to stop.

Where do lizards get new tails?  A retail store.   😂

Tons of Tails

Exploring the tree fully to a length of 17, we get the following tails (and more, ranging from 5kb to 3.3Gb compressed, for download below). Fairly many lengths are lumped in with the lower neighbour because there are no new Good tails at those lengths. This is because of how growing powers of 2 and 3 overtake each other irregularly. A new Good tail correlates with the Ugly getting one bit longer with each column to the left, which follows from the way they grow.

I don't repeat Good tails from the right – because they're Good, no matter how many more bits you stick in front. That makes this look heavily distorted in favour of Bad tails. But the opposite is true because the shorter Good tails cover the lion's share of numbers. Colour isn't striped as I list only initial tails, not full sequences as above.

17, 161514, 131211, 109, 876, 543, 21
 000000000011011+
0100000000011011-
1100000000011011+
  10000000011011+
0001000000011011+
1001000000011011-
0011000000011011+
1011000000011011-
 111000000011011+
 001100000011011+
0101100000011011-
1101100000011011+
0011100000011011-
1011100000011011+
   0010000011011+
  01010000011011+
0011010000011011-
1011010000011011+
 111010000011011+
  00110000011011+
 010110000011011+
0110110000011011-
1110110000011011+
 001110000011011+
0101110000011011+
1101110000011011-
0011110000011011+
1011110000011011-
0001001000011011-
1001001000011011+
 101001000011011+
0111001000011011+
1111001000011011-
0001011000011011+
1001011000011011-
 101011000011011+
0111011000011011-
1111011000011011+
0100111000011011+
1100111000011011-
 010111000011011+
0110111000011011+
1110111000011011-
  01111000011011+
 011111000011011+
0111111000011011-
1111111000011011+
  00000100011011+
0010000100011011+
1010000100011011-
 110000100011011+
0001000100011011-
1001000100011011+
 101000100011011+
0111000100011011+
1111000100011011-
0001100100011011+
1001100100011011-
0011100100011011+
1011100100011011-
 111100100011011+
   0010100011011+
0001010100011011+
1001010100011011-
 101010100011011+
  11010100011011+
 000110100011011+
0100110100011011+
1100110100011011-
  10110100011011+
0001110100011011-
1001110100011011+
0011110100011011-
1011110100011011+
 111110100011011+
  00001100011011+
 010001100011011+
0110001100011011-
1110001100011011+
 001001100011011+
0101001100011011+
1101001100011011-
0011001100011011+
1011001100011011-
  00101100011011+
0010101100011011-
1010101100011011+
 110101100011011+
   1101100011011+
    011100011011+
0000111100011011+
1000111100011011-
 100111100011011+
  10111100011011+
   1111100011011+
0000000010011011+
1000000010011011-
 100000010011011+
0110000010011011-
1110000010011011+
0000010010011011-
1000010010011011+
 100010010011011+
0110010010011011+
1110010010011011-
  00110010011011+
 010110010011011+
0110110010011011+
1110110010011011-
 001110010011011+
0101110010011011-
1101110010011011+
0011110010011011-
1011110010011011+
  00001010011011+
0010001010011011+
1010001010011011-
 110001010011011+
   1001010011011+
 000101010011011+
0100101010011011-
1100101010011011+
0010101010011011-
1010101010011011+
 001101010011011+
0101101010011011+
1101101010011011-
  11101010011011+
 000011010011011+
0100011010011011+
1100011010011011-
0010011010011011+
1010011010011011-
  00111010011011+
0010111010011011+
1010111010011011-
 110111010011011+
0001111010011011-
1001111010011011+
 101111010011011+
0111111010011011+
1111111010011011-
0100000110011011+
1100000110011011-
 010000110011011+
0110000110011011+
1110000110011011-
 000100110011011+
0100100110011011+
1100100110011011-
  10100110011011+
0001100110011011-
1001100110011011+
0011100110011011-
1011100110011011+
 111100110011011+
 001110110011011+
0101110110011011-
1101110110011011+
0011110110011011-
1011110110011011+
0000000001011011+
1000000001011011-
 100000001011011+
  10000001011011+
0101000001011011+
1101000001011011-
 011000001011011+
0111000001011011+
1111000001011011-
 000100001011011+
0100100001011011-
1100100001011011+
  10100001011011+
   1100001011011+
 000010001011011+
0100010001011011+
1100010001011011-
0010010001011011+
1010010001011011-
 001010001011011+
0101010001011011-
1101010001011011+
  11010001011011+
0100110001011011-
1100110001011011+
 010110001011011+
0110110001011011-
1110110001011011+
0000001001011011-
1000001001011011+
 100001001011011+
0110001001011011+
1110001001011011-
0001001001011011+
1001001001011011-
 101001001011011+
  11001001011011+
0000101001011011+
1000101001011011-
0010101001011011+
1010101001011011-
 110101001011011+
0000011001011011-
1000011001011011+
0010011001011011-
1010011001011011+
 110011001011011+
0000001101011011-
1000001101011011+
 100001101011011+
0110001101011011+
1110001101011011-
0000011101011011+
1000011101011011-
 100011101011011+
0110011101011011-
1110011101011011+
  00111101011011+
 010111101011011+
0110111101011011-
1110111101011011+
 001111101011011+
0101111101011011+
1101111101011011-
0011111101011011+
1011111101011011-
 000000011111011+
0100000011111011-
1100000011111011+
  10000011111011+
   1000011111011+
0100100011111011+
1100100011111011-
 010100011111011+
0110100011111011+
1110100011111011-
  01100011111011+
 011100011111011+
0111100011111011-
1111100011111011+
0100010011111011-
1100010011111011+
 010010011111011+
0110010011111011-
1110010011111011+
 000110011111011+
0100110011111011-
1100110011111011+
  10110011111011+
0001110011111011+
1001110011111011-
0011110011111011+
1011110011111011-
 111110011111011+
0000001011111011+
1000001011111011-
0010001011111011+
1010001011111011-
 110001011111011+
0000101011111011+
1000101011111011-
 100101011111011+
  10101011111011+
0101101011111011+
1101101011111011-
 011101011111011+
0111101011111011+
1111101011111011-
0001111011111011-
1001111011111011+
 101111011111011+
0111111011111011+
1111111011111011-
0101101111111011+
1101101111111011-
 011101111111011+
0111101111111011+
1111101111111011-
  00011111111011+
 010011111111011+
0110011111111011-
1110011111111011+
 001011111111011+
0101011111111011+
1101011111111011-
0011011111111011+
1011011111111011-
0101111111111011-
1101111111111011+
 011111111111011+
0111111111111011-
1111111111111011+
 000000001000111+
0100000001000111-
1100000001000111+
0010000001000111-
1010000001000111+
 001000001000111+
0101000001000111+
1101000001000111-
  11000001000111+
0100100001000111+
1100100001000111-
 010100001000111+
0110100001000111+
1110100001000111-
0100010001000111-
1100010001000111+
 010010001000111+
0110010001000111-
1110010001000111+
  00000101000111+
 010000101000111+
0110000101000111+
1110000101000111-
 001000101000111+
0101000101000111-
1101000101000111+
0011000101000111-
1011000101000111+
  00100101000111+
0010100101000111+
1010100101000111-
 110100101000111+
   1100101000111+
0000010101000111-
1000010101000111+
0010010101000111-
1010010101000111+
 110010101000111+
  01010101000111+
0011010101000111+
1011010101000111-
 111010101000111+
 000110101000111+
0100110101000111+
1100110101000111-
0010110101000111+
1010110101000111-
0100001101000111-
1100001101000111+
 010001101000111+
0110001101000111-
1110001101000111+
  01001101000111+
 011001101000111+
0111001101000111+
1111001101000111-
0000101101000111-
1000101101000111+
 100101101000111+
0110101101000111+
1110101101000111-
0000011101000111+
1000011101000111-
 100011101000111+
0110011101000111-
1110011101000111+
   0000010100111+
  01000010100111+
0011000010100111+
1011000010100111-
 111000010100111+
  00100010100111+
 010100010100111+
0110100010100111+
1110100010100111-
 001100010100111+
0101100010100111-
1101100010100111+
0011100010100111-
1011100010100111+
 001010010100111+
0101010010100111+
1101010010100111-
0011010010100111+
1011010010100111-
0000110010100111-
1000110010100111+
0010110010100111-
1010110010100111+
 110110010100111+
  01110010100111+
0011110010100111+
1011110010100111-
 111110010100111+
0001001010100111-
1001001010100111+
 101001010100111+
0111001010100111+
1111001010100111-
0100101010100111-
1100101010100111+
 010101010100111+
0110101010100111-
1110101010100111+
  01101010100111+
 011101010100111+
0111101010100111+
1111101010100111-
0000111010100111+
1000111010100111-
 100111010100111+
0110111010100111-
1110111010100111+
0100101110100111-
1100101110100111+
 010101110100111+
0110101110100111-
1110101110100111+
 000011110100111+
0100011110100111-
1100011110100111+
0010011110100111-
1010011110100111+
 001011110100111+
0101011110100111+
1101011110100111-
  11011110100111+
0100111110100111+
1100111110100111-
 010111110100111+
0110111110100111+
1110111110100111-
 000000001100111+
0100000001100111+
1100000001100111-
0010000001100111+
1010000001100111-
  00100001100111+
0010100001100111+
1010100001100111-
 110100001100111+
0001100001100111-
1001100001100111+
 101100001100111+
0111100001100111+
1111100001100111-
 000010001100111+
0100010001100111-
1100010001100111+
0010010001100111-
1010010001100111+
 001010001100111+
0101010001100111+
1101010001100111-
  11010001100111+
   0110001100111+
0001110001100111+
1001110001100111-
 101110001100111+
  11110001100111+
0101101001100111-
1101101001100111+
 011101001100111+
0111101001100111-
1111101001100111+
  00011001100111+
 010011001100111+
0110011001100111+
1110011001100111-
 001011001100111+
0101011001100111-
1101011001100111+
0011011001100111-
1011011001100111+
0101111001100111+
1101111001100111-
 011111001100111+
0111111001100111+
1111111001100111-
0000000101100111-
1000000101100111+
0010000101100111-
1010000101100111+
 110000101100111+
0000100101100111-
1000100101100111+
 100100101100111+
  10100101100111+
0101100101100111-
1101100101100111+
 011100101100111+
0111100101100111-
1111100101100111+
0000010101100111+
1000010101100111-
0010010101100111+
1010010101100111-
 110010101100111+
  01010101100111+
0011010101100111-
1011010101100111+
 111010101100111+
   0110101100111+
  01110101100111+
 011110101100111+
0111110101100111+
1111110101100111-
   0001101100111+
0001001101100111+
1001001101100111-
 101001101100111+
  11001101100111+
 000101101100111+
0100101101100111+
1100101101100111-
  10101101100111+
0001101101100111-
1001101101100111+
0011101101100111-
1011101101100111+
 111101101100111+
   0011101100111+
  01011101100111+
 011011101100111+
0111011101100111+
1111011101100111-
    111101100111+
0100100011100111+
1100100011100111-
 010100011100111+
0110100011100111+
1110100011100111-
 000010011100111+
0100010011100111+
1100010011100111-
0010010011100111+
1010010011100111-
 001010011100111+
0101010011100111-
1101010011100111+
  11010011100111+
0100110011100111-
1100110011100111+
 010110011100111+
0110110011100111-
1110110011100111+
 000001011100111+
0100001011100111-
1100001011100111+
  10001011100111+
0001001011100111+
1001001011100111-
0011001011100111+
1011001011100111-
 111001011100111+
0000101011100111-
1000101011100111+
 100101011100111+
  10101011100111+
   1101011100111+
0000011011100111+
1000011011100111-
 100011011100111+
0110011011100111-
1110011011100111+
0001011011100111-
1001011011100111+
 101011011100111+
  11011011100111+
0000111011100111-
1000111011100111+
0010111011100111-
1010111011100111+
 110111011100111+
0000000111100111+
1000000111100111-
0010000111100111+
1010000111100111-
 110000111100111+
  01000111100111+
0011000111100111-
1011000111100111+
 111000111100111+
 000100111100111+
0100100111100111-
1100100111100111+
0010100111100111-
1010100111100111+
 000010111100111+
0100010111100111+
1100010111100111-
0010010111100111+
1010010111100111-
 001000011001111+
0101000011001111-
1101000011001111+
0011000011001111-
1011000011001111+
0000100011001111+
1000100011001111-
0010100011001111+
1010100011001111-
 110100011001111+
  01100011001111+
0011100011001111-
1011100011001111+
 111100011001111+
 000110011001111+
0100110011001111+
1100110011001111-
0010110011001111+
1010110011001111-
0001001011001111-
1001001011001111+
 101001011001111+
0111001011001111+
1111001011001111-
0100101011001111-
1100101011001111+
 010101011001111+
0110101011001111-
1110101011001111+
  01101011001111+
 011101011001111+
0111101011001111+
1111101011001111-
  00011011001111+
0010011011001111-
1010011011001111+
 110011011001111+
0001011011001111+
1001011011001111-
 101011011001111+
0111011011001111-
1111011011001111+
  00111011001111+
 010111011001111+
0110111011001111+
1110111011001111-
   1111011001111+
0000100111001111+
1000100111001111-
0010100111001111+
1010100111001111-
 110100111001111+
0000010111001111+
1000010111001111-
 100010111001111+
0110010111001111-
1110010111001111+
0001010111001111-
1001010111001111+
 101010111001111+
  11010111001111+
0000110111001111-
1000110111001111+
0010110111001111-
1010110111001111+
 110110111001111+
 000000000101111+
0100000000101111-
1100000000101111+
  10000000101111+
0001000000101111+
1001000000101111-
0011000000101111+
1011000000101111-
 111000000101111+
 001100000101111+
0101100000101111-
1101100000101111+
0011100000101111-
1011100000101111+
 001010000101111+
0101010000101111+
1101010000101111-
0011010000101111+
1011010000101111-
0000001000101111-
1000001000101111+
 100001000101111+
  10001000101111+
0101001000101111-
1101001000101111+
 011001000101111+
0111001000101111-
1111001000101111+
0001101000101111-
1001101000101111+
 101101000101111+
0111101000101111+
1111101000101111-
   0011000101111+
  01011000101111+
 011011000101111+
0111011000101111+
1111011000101111-
  00111000101111+
0010111000101111-
1010111000101111+
 110111000101111+
0001111000101111+
1001111000101111-
 101111000101111+
0111111000101111-
1111111000101111+
0001000100101111+
1001000100101111-
0011000100101111+
1011000100101111-
 111000100101111+
0001010100101111-
1001010100101111+
0011010100101111-
1011010100101111+
 111010100101111+
0000110100101111+
1000110100101111-
 100110100101111+
0110110100101111-
1110110100101111+
0001110100101111-
1001110100101111+
 101110100101111+
  11110100101111+
   0000001101111+
 001000001101111+
0101000001101111-
1101000001101111+
  11000001101111+
0000100001101111+
1000100001101111-
 100100001101111+
  10100001101111+
0101100001101111+
1101100001101111-
 011100001101111+
0111100001101111+
1111100001101111-
0101010001101111-
1101010001101111+
 011010001101111+
0111010001101111-
1111010001101111+
 000110001101111+
0100110001101111+
1100110001101111-
0010110001101111+
1010110001101111-
 001110001101111+
0101110001101111-
1101110001101111+
  11110001101111+
0001001001101111+
1001001001101111-
0011001001101111+
1011001001101111-
 111001001101111+
0000101001101111-
1000101001101111+
 100101001101111+
0110101001101111+
1110101001101111-
0001101001101111+
1001101001101111-
 101101001101111+
  11101001101111+
0000111001101111-
1000111001101111+
0010111001101111-
1010111001101111+
 110111001101111+
0000101101101111-
1000101101101111+
 100101101101111+
0110101101101111+
1110101101101111-
0100011101101111+
1100011101101111-
 010011101101111+
0110011101101111+
1110011101101111-
  01011101101111+
 011011101101111+
0111011101101111-
1111011101101111+
0000111101101111+
1000111101101111-
 100111101101111+
0110111101101111-
1110111101101111+
0000000011101111+
1000000011101111-
 100000011101111+
0110000011101111-
1110000011101111+
0001000011101111-
1001000011101111+
 101000011101111+
  11000011101111+
   0100011101111+
 001100011101111+
0101100011101111+
1101100011101111-
  11100011101111+
    010011101111+
   0110011101111+
  01110011101111+
0011110011101111-
1011110011101111+
 111110011101111+
 000001011101111+
0100001011101111-
1100001011101111+
  10001011101111+
   1001011101111+
0100101011101111+
1100101011101111-
 010101011101111+
0110101011101111+
1110101011101111-
  01101011101111+
 011101011101111+
0111101011101111-
1111101011101111+
0100011011101111-
1100011011101111+
 010011011101111+
0110011011101111-
1110011011101111+
 000111011101111+
0100111011101111-
1100111011101111+
  10111011101111+
0001111011101111+
1001111011101111-
0011111011101111+
1011111011101111-
 111111011101111+
  00000111101111+
 010000111101111+
0110000111101111+
1110000111101111-
   1000111101111+
0000100111101111+
1000100111101111-
 100100111101111+
0110100111101111-
1110100111101111+
0001100111101111-
1001100111101111+
 101100111101111+
  11100111101111+
0000010111101111-
1000010111101111+
 100010111101111+
0110010111101111+
1110010111101111-
  00110111101111+
 010110111101111+
0110110111101111+
1110110111101111-
 001110111101111+
0101110111101111-
1101110111101111+
0011110111101111-
1011110111101111+
 000001111101111+
0100001111101111-
1100001111101111+
0010001111101111-
1010001111101111+
  00101111101111+
0010101111101111-
1010101111101111+
 110101111101111+
0001101111101111+
1001101111101111-
 101101111101111+
0111101111101111-
1111101111101111+
0001111111101111+
1001111111101111-
0011111111101111+
1011111111101111-
 111111111101111+
  00000000011111+
 010000000011111+
0110000000011111+
1110000000011111-
 001000000011111+
0101000000011111-
1101000000011111+
0011000000011111-
1011000000011111+
0101100000011111+
1101100000011111-
 011100000011111+
0111100000011111+
1111100000011111-
   0010000011111+
 001010000011111+
0101010000011111+
1101010000011111-
  11010000011111+
0000110000011111-
1000110000011111+
 100110000011111+
  10110000011111+
0101110000011111-
1101110000011111+
 011110000011111+
0111110000011111-
1111110000011111+
0001001000011111+
1001001000011111-
0011001000011111+
1011001000011111-
 111001000011111+
0001011000011111-
1001011000011111+
0011011000011111-
1011011000011111+
 111011000011111+
0000111000011111+
1000111000011111-
 100111000011111+
0110111000011111-
1110111000011111+
0001111000011111-
1001111000011111+
 101111000011111+
  11111000011111+
0001001100011111-
1001001100011111+
 101001100011111+
0111001100011111+
1111001100011111-
0100101100011111-
1100101100011111+
 010101100011111+
0110101100011111-
1110101100011111+
  01101100011111+
 011101100011111+
0111101100011111+
1111101100011111-
0000111100011111+
1000111100011111-
 100111100011111+
0110111100011111-
1110111100011111+
 000000010011111+
0100000010011111+
1100000010011111-
  10000010011111+
   1000010011111+
    100010011111+
0000010010011111-
1000010010011111+
 100010010011111+
0110010010011111+
1110010010011111-
0001010010011111+
1001010010011111-
 101010010011111+
  11010010011111+
   0110010011111+
 001110010011111+
0101110010011111-
1101110010011111+
  11110010011111+
 000001010011111+
0100001010011111-
1100001010011111+
0010001010011111-
1010001010011111+
 001001010011111+
0101001010011111+
1101001010011111-
  11001010011111+
0100101010011111+
1100101010011111-
 010101010011111+
0110101010011111+
1110101010011111-
 000011010011111+
0100011010011111+
1100011010011111-
  10011010011111+
   1011010011111+
0100111010011111-
1100111010011111+
 010111010011111+
0110111010011111-
1110111010011111+
  01111010011111+
 011111010011111+
0111111010011111+
1111111010011111-
0100000110011111+
1100000110011111-
 010000110011111+
0110000110011111+
1110000110011111-
  01000110011111+
 011000110011111+
0111000110011111-
1111000110011111+
0000100110011111+
1000100110011111-
 100100110011111+
0110100110011111-
1110100110011111+
  00010110011111+
 010010110011111+
0110010110011111-
1110010110011111+
   1010110011111+
0000110110011111-
1000110110011111+
 100110110011111+
0110110110011111+
1110110110011111-
0001110110011111+
1001110110011111-
 101110110011111+
  11110110011111+
 000001110011111+
0100001110011111-
1100001110011111+
0010001110011111-
1010001110011111+
 000011110011111+
0100011110011111+
1100011110011111-
0010011110011111+
1010011110011111-
  00111110011111+
0010111110011111+
1010111110011111-
 110111110011111+
0001111110011111-
1001111110011111+
 101111110011111+
0111111110011111+
1111111110011111-
  00000011011111+
0010000011011111+
1010000011011111-
 110000011011111+
0001000011011111-
1001000011011111+
 101000011011111+
0111000011011111+
1111000011011111-
0001100011011111+
1001100011011111-
0011100011011111+
1011100011011111-
 111100011011111+
0001010011011111-
1001010011011111+
0011010011011111-
1011010011011111+
 111010011011111+
0000000111011111-
1000000111011111+
0010000111011111-
1010000111011111+
 110000111011111+
  01000111011111+
0011000111011111+
1011000111011111-
 111000111011111+
   0100111011111+
  01100111011111+
 011100111011111+
0111100111011111-
1111100111011111+
0000010111011111+
1000010111011111-
 100010111011111+
  10010111011111+
0101010111011111+
1101010111011111-
 011010111011111+
0111010111011111+
1111010111011111-
0001110111011111+
1001110111011111-
 101110111011111+
0111110111011111-
1111110111011111+
 000001111011111+
0100001111011111+
1100001111011111-
  10001111011111+
0001001111011111-
1001001111011111+
0011001111011111-
1011001111011111+
 111001111011111+
 001101111011111+
0101101111011111+
1101101111011111-
0011101111011111+
1011101111011111-
 001011111011111+
0101011111011111-
1101011111011111+
0011011111011111-
1011011111011111+
 000000000111111+
0100000000111111+
1100000000111111-
0010000000111111+
1010000000111111-
  00100000111111+
0010100000111111+
1010100000111111-
 110100000111111+
0001100000111111-
1001100000111111+
 101100000111111+
0111100000111111+
1111100000111111-
0001110000111111-
1001110000111111+
0011110000111111-
1011110000111111+
 111110000111111+
0000000100111111+
1000000100111111-
 100000100111111+
  10000100111111+
   1000100111111+
0000100100111111-
1000100100111111+
0010100100111111-
1010100100111111+
 110100100111111+
  01100100111111+
0011100100111111+
1011100100111111-
 111100100111111+
0000010100111111+
1000010100111111-
0010010100111111+
1010010100111111-
 110010100111111+
0000110100111111+
1000110100111111-
 100110100111111+
  10110100111111+
0101110100111111+
1101110100111111-
 011110100111111+
0111110100111111+
1111110100111111-
0100001100111111+
1100001100111111-
 010001100111111+
0110001100111111+
1110001100111111-
 000101100111111+
0100101100111111+
1100101100111111-
  10101100111111+
0001101100111111-
1001101100111111+
0011101100111111-
1011101100111111+
 111101100111111+
 001111100111111+
0101111100111111-
1101111100111111+
0011111100111111-
1011111100111111+
0101000010111111+
1101000010111111-
 011000010111111+
0111000010111111+
1111000010111111-
0101010010111111-
1101010010111111+
 011010010111111+
0111010010111111-
1111010010111111+
 000110010111111+
0100110010111111+
1100110010111111-
0010110010111111+
1010110010111111-
 001110010111111+
0101110010111111-
1101110010111111+
  11110010111111+
   0001010111111+
0001001010111111-
1001001010111111+
 101001010111111+
  11001010111111+
 000101010111111+
0100101010111111-
1100101010111111+
  10101010111111+
0001101010111111+
1001101010111111-
0011101010111111+
1011101010111111-
 111101010111111+
0001011010111111-
1001011010111111+
0011011010111111-
1011011010111111+
 111011010111111+
0000111010111111+
1000111010111111-
 100111010111111+
0110111010111111-
1110111010111111+
0001111010111111-
1001111010111111+
 101111010111111+
  11111010111111+
 000000110111111+
0100000110111111-
1100000110111111+
  10000110111111+
0001000110111111+
1001000110111111-
0011000110111111+
1011000110111111-
 111000110111111+
0000100110111111-
1000100110111111+
 100100110111111+
  10100110111111+
   1100110111111+
    010110111111+
  00110110111111+
 010110110111111+
0110110110111111-
1110110110111111+
   1110110111111+
   0001110111111+
  01001110111111+
 011001110111111+
0111001110111111-
1111001110111111+
  00101110111111+
0010101110111111+
1010101110111111-
 110101110111111+
0001101110111111-
1001101110111111+
 101101110111111+
0111101110111111+
1111101110111111-
0001011110111111+
1001011110111111-
 101011110111111+
0111011110111111-
1111011110111111+
0100111110111111+
1100111110111111-
 010111110111111+
0110111110111111+
1110111110111111-
  01111110111111+
 011111110111111+
0111111110111111-
1111111110111111+
0100000001111111-
1100000001111111+
 010000001111111+
0110000001111111-
1110000001111111+
 000100001111111+
0100100001111111-
1100100001111111+
  10100001111111+
0001100001111111+
1001100001111111-
0011100001111111+
1011100001111111-
 111100001111111+
0100010001111111+
1100010001111111-
 010010001111111+
0110010001111111+
1110010001111111-
  01010001111111+
 011010001111111+
0111010001111111-
1111010001111111+
   0110001111111+
  01110001111111+
0011110001111111-
1011110001111111+
 111110001111111+
   0001001111111+
 001001001111111+
0101001001111111+
1101001001111111-
  11001001111111+
0000101001111111-
1000101001111111+
 100101001111111+
  10101001111111+
0101101001111111-
1101101001111111+
 011101001111111+
0111101001111111-
1111101001111111+
   0011001111111+
  01011001111111+
0011011001111111-
1011011001111111+
 111011001111111+
    111001111111+
0001100101111111+
1001100101111111-
0011100101111111+
1011100101111111-
 111100101111111+
  00010101111111+
0010010101111111-
1010010101111111+
 110010101111111+
0001010101111111+
1001010101111111-
 101010101111111+
0111010101111111-
1111010101111111+
0001110101111111-
1001110101111111+
0011110101111111-
1011110101111111+
 111110101111111+
0000001101111111+
1000001101111111-
 100001101111111+
0110001101111111-
1110001101111111+
0001001101111111-
1001001101111111+
 101001101111111+
  11001101111111+
   0101101111111+
 001101101111111+
0101101101111111+
1101101101111111-
  11101101111111+
  00011101111111+
 010011101111111+
0110011101111111+
1110011101111111-
 001011101111111+
0101011101111111-
1101011101111111+
0011011101111111-
1011011101111111+
0101111101111111+
1101111101111111-
 011111101111111+
0111111101111111+
1111111101111111-
0001000011111111+
1001000011111111-
 101000011111111+
0111000011111111-
1111000011111111+
0100100011111111+
1100100011111111-
 010100011111111+
0110100011111111+
1110100011111111-
  01100011111111+
 011100011111111+
0111100011111111-
1111100011111111+
  00010011111111+
0010010011111111+
1010010011111111-
 110010011111111+
0001010011111111-
1001010011111111+
 101010011111111+
0111010011111111+
1111010011111111-
  00110011111111+
 010110011111111+
0110110011111111-
1110110011111111+
   1110011111111+
0000001011111111-
1000001011111111+
 100001011111111+
  10001011111111+
   1001011111111+
0000101011111111+
1000101011111111-
0010101011111111+
1010101011111111-
 110101011111111+
  01101011111111+
0011101011111111-
1011101011111111+
 111101011111111+
  00011011111111+
 010011011111111+
0110011011111111-
1110011011111111+
   1011011111111+
    111011111111+
   0000111111111+
  01000111111111+
0011000111111111-
1011000111111111+
 111000111111111+
    100111111111+
0000010111111111-
1000010111111111+
 100010111111111+
  10010111111111+
0101010111111111-
1101010111111111+
 011010111111111+
0111010111111111-
1111010111111111+
 000110111111111+
0100110111111111+
1100110111111111-
  10110111111111+
   1110111111111+
  00001111111111+
 010001111111111+
0110001111111111-
1110001111111111+
   1001111111111+
    101111111111+
     11111111111*
  0000000011011+
001000000011011+
101000000011011-
 11000000011011+
 01100000011011+
011100000011011+
111100000011011-
   010000011011+
  0110000011011+
 01110000011011+
011110000011011+
111110000011011-
 01001000011011+
011001000011011-
111001000011011+
 01011000011011+
011011000011011-
111011000011011+
000111000011011-
100111000011011+
 10111000011011+
  1111000011011+
  0000100011011+
 01000100011011+
011000100011011-
111000100011011+
001100100011011+
101100100011011-
 11100100011011+
   010100011011+
  0110100011011+
001110100011011+
101110100011011-
 11110100011011+
  0001100011011+
 01001100011011+
011001100011011+
111001100011011-
   101100011011+
    11100011011+
 00000010011011+
010000010011011-
110000010011011+
 00010010011011+
010010010011011-
110010010011011+
  0110010011011+
 01110010011011+
011110010011011+
111110010011011-
   001010011011+
 00101010011011+
010101010011011+
110101010011011-
  1101010011011+
 00011010011011+
010011010011011+
110011010011011-
  0111010011011+
 01111010011011+
011111010011011-
111111010011011+
000000110011011-
100000110011011+
 10000110011011+
  0100110011011+
001100110011011+
101100110011011-
 11100110011011+
 01110110011011+
011110110011011+
111110110011011-
  0000001011011+
001000001011011-
101000001011011+
 11000001011011+
   100001011011+
 00010001011011+
010010001011011+
110010001011011-
  1010001011011+
000110001011011-
100110001011011+
 10110001011011+
 00001001011011+
010001001011011-
110001001011011+
  1001001011011+
000101001011011+
100101001011011-
 10101001011011+
000011001011011+
100011001011011-
 10011001011011+
 00001101011011+
010001101011011-
110001101011011+
 00011101011011+
010011101011011-
110011101011011+
  0111101011011+
 01111101011011+
011111101011011+
111111101011011-
   000011111011+
000100011111011-
100100011111011+
 10100011111011+
  1100011111011+
000010011111011-
100010011111011+
 10010011111011+
  0110011111011+
001110011111011+
101110011111011-
 11110011111011+
000001011111011+
100001011111011-
 10001011111011+
  0101011111011+
001101011111011-
101101011111011+
 11101011111011+
 01111011111011+
011111011111011-
111111011111011+
001101111111011-
101101111111011+
 11101111111011+
  0011111111011+
 01011111111011+
011011111111011+
111011111111011-
001111111111011-
101111111111011+
 11111111111011+
 00000001000111+
010000001000111+
110000001000111-
  1000001000111+
000100001000111-
100100001000111+
 10100001000111+
000010001000111-
100010001000111+
 10010001000111+
  0000101000111+
 01000101000111+
011000101000111+
111000101000111-
   100101000111+
000010101000111+
100010101000111-
 10010101000111+
  1010101000111+
 00110101000111+
010110101000111+
110110101000111-
000001101000111-
100001101000111+
 10001101000111+
  1001101000111+
 00101101000111+
010101101000111-
110101101000111+
 00011101000111+
010011101000111-
110011101000111+
   000010100111+
  0100010100111+
 01100010100111+
011100010100111+
111100010100111-
 01010010100111+
011010010100111+
111010010100111-
000110010100111+
100110010100111-
 10110010100111+
  1110010100111+
 01001010100111+
011001010100111-
111001010100111+
000101010100111-
100101010100111+
 10101010100111+
  1101010100111+
 00111010100111+
010111010100111-
110111010100111+
000101110100111-
100101110100111+
 10101110100111+
 00011110100111+
010011110100111+
110011110100111-
  1011110100111+
000111110100111-
100111110100111+
 10111110100111+
 00000001100111+
010000001100111+
110000001100111-
  0100001100111+
 01100001100111+
011100001100111-
111100001100111+
 00010001100111+
010010001100111+
110010001100111-
  1010001100111+
   110001100111+
001101001100111-
101101001100111+
 11101001100111+
  0011001100111+
 01011001100111+
011011001100111+
111011001100111-
001111001100111-
101111001100111+
 11111001100111+
000000101100111+
100000101100111-
 10000101100111+
  0100101100111+
001100101100111-
101100101100111+
 11100101100111+
000010101100111+
100010101100111-
 10010101100111+
  1010101100111+
   110101100111+
   001101100111+
  0101101100111+
001101101100111+
101101101100111-
 11101101100111+
    11101100111+
000100011100111-
100100011100111+
 10100011100111+
 00010011100111+
010010011100111+
110010011100111-
  1010011100111+
000110011100111-
100110011100111+
 10110011100111+
  0001011100111+
001001011100111+
101001011100111-
 11001011100111+
   101011100111+
 00011011100111+
010011011100111-
110011011100111+
  1011011100111+
000111011100111+
100111011100111-
 10111011100111+
000000111100111+
100000111100111-
 10000111100111+
  1000111100111+
 00100111100111+
010100111100111+
110100111100111-
 00010111100111+
010010111100111+
110010111100111-
 01000011001111+
011000011001111+
111000011001111-
000100011001111+
100100011001111-
 10100011001111+
  1100011001111+
 00110011001111+
010110011001111+
110110011001111-
 01001011001111+
011001011001111-
111001011001111+
000101011001111-
100101011001111+
 10101011001111+
  1101011001111+
  0011011001111+
 01011011001111+
011011011001111-
111011011001111+
   111011001111+
000100111001111+
100100111001111-
 10100111001111+
 00010111001111+
010010111001111-
110010111001111+
  1010111001111+
000110111001111+
100110111001111-
 10110111001111+
  0000000101111+
001000000101111+
101000000101111-
 11000000101111+
 01100000101111+
011100000101111+
111100000101111-
 01010000101111+
011010000101111+
111010000101111-
  0001000101111+
001001000101111-
101001000101111+
 11001000101111+
 01101000101111+
011101000101111-
111101000101111+
   011000101111+
  0111000101111+
 01111000101111+
011111000101111-
111111000101111+
001000100101111+
101000100101111-
 11000100101111+
001010100101111+
101010100101111-
 11010100101111+
 00110100101111+
010110100101111-
110110100101111+
  1110100101111+
   000001101111+
  0100001101111+
001100001101111-
101100001101111+
 11100001101111+
001010001101111-
101010001101111+
 11010001101111+
 00110001101111+
010110001101111+
110110001101111-
  1110001101111+
001001001101111+
101001001101111-
 11001001101111+
 00101001101111+
010101001101111-
110101001101111+
  1101001101111+
000111001101111+
100111001101111-
 10111001101111+
 00101101101111+
010101101101111-
110101101101111+
000011101101111-
100011101101111+
 10011101101111+
  1011101101111+
 00111101101111+
010111101101111-
110111101101111+
 00000011101111+
010000011101111-
110000011101111+
  1000011101111+
   100011101111+
    10011101111+
   001011101111+
000101011101111-
100101011101111+
 10101011101111+
  1101011101111+
000011011101111-
100011011101111+
 10011011101111+
  0111011101111+
001111011101111+
101111011101111-
 11111011101111+
   000111101111+
 00100111101111+
010100111101111-
110100111101111+
  1100111101111+
 00010111101111+
010010111101111-
110010111101111+
  0110111101111+
 01110111101111+
011110111101111+
111110111101111-
 00001111101111+
010001111101111+
110001111101111-
  0101111101111+
 01101111101111+
011101111101111-
111101111101111+
001111111101111+
101111111101111-
 11111111101111+
  0000000011111+
 01000000011111+
011000000011111+
111000000011111-
001100000011111-
101100000011111+
 11100000011111+
   010000011111+
  0110000011111+
001110000011111-
101110000011111+
 11110000011111+
001001000011111+
101001000011111-
 11001000011111+
001011000011111+
101011000011111-
 11011000011111+
 00111000011111+
010111000011111-
110111000011111+
  1111000011111+
 01001100011111+
011001100011111-
111001100011111+
000101100011111-
100101100011111+
 10101100011111+
  1101100011111+
 00111100011111+
010111100011111-
110111100011111+
    00010011111+
 00010010011111+
010010010011111-
110010010011111+
  1010010011111+
   110010011111+
 00001010011111+
010001010011111+
110001010011111-
  1001010011111+
000101010011111-
100101010011111+
 10101010011111+
   011010011111+
000111010011111-
100111010011111+
 10111010011111+
  1111010011111+
000000110011111-
100000110011111+
 10000110011111+
  1000110011111+
 00100110011111+
010100110011111-
110100110011111+
   010110011111+
 00110110011111+
010110110011111-
110110110011111+
  1110110011111+
 00001110011111+
010001110011111+
110001110011111-
 00011110011111+
010011110011111+
110011110011111-
  0111110011111+
 01111110011111+
011111110011111-
111111110011111+
  0000011011111+
 01000011011111+
011000011011111-
111000011011111+
001100011011111+
101100011011111-
 11100011011111+
001010011011111+
101010011011111-
 11010011011111+
000000111011111+
100000111011111-
 10000111011111+
  1000111011111+
   100111011111+
  0010111011111+
001010111011111-
101010111011111+
 11010111011111+
 01110111011111+
011110111011111-
111110111011111+
  0001111011111+
001001111011111+
101001111011111-
 11001111011111+
 01101111011111+
011101111011111+
111101111011111-
 01011111011111+
011011111011111+
111011111011111-
 00000000111111+
010000000111111+
110000000111111-
  0100000111111+
 01100000111111+
011100000111111-
111100000111111+
001110000111111+
101110000111111-
 11110000111111+
   000100111111+
000100100111111+
100100100111111-
 10100100111111+
  1100100111111+
000010100111111+
100010100111111-
 10010100111111+
  0110100111111+
001110100111111-
101110100111111+
 11110100111111+
000001100111111-
100001100111111+
 10001100111111+
  0101100111111+
001101100111111+
101101100111111-
 11101100111111+
 01111100111111+
011111100111111+
111111100111111-
001000010111111-
101000010111111+
 11000010111111+
001010010111111-
101010010111111+
 11010010111111+
 00110010111111+
010110010111111+
110110010111111-
  1110010111111+
   001010111111+
  0101010111111+
001101010111111+
101101010111111-
 11101010111111+
001011010111111+
101011010111111-
 11011010111111+
 00111010111111+
010111010111111-
110111010111111+
  1111010111111+
  0000110111111+
001000110111111+
101000110111111-
 11000110111111+
   100110111111+
    10110111111+
   001110111111+
  0101110111111+
 01101110111111+
011101110111111-
111101110111111+
 01011110111111+
011011110111111-
111011110111111+
000111110111111-
100111110111111+
 10111110111111+
  1111110111111+
000000001111111-
100000001111111+
 10000001111111+
  0100001111111+
001100001111111+
101100001111111-
 11100001111111+
000010001111111-
100010001111111+
 10010001111111+
  1010001111111+
   110001111111+
   001001111111+
  0101001111111+
001101001111111-
101101001111111+
 11101001111111+
    11001111111+
001100101111111+
101100101111111-
 11100101111111+
  0010101111111+
 01010101111111+
011010101111111-
111010101111111+
001110101111111+
101110101111111-
 11110101111111+
 00001101111111+
010001101111111-
110001101111111+
  1001101111111+
   101101111111+
  0011101111111+
 01011101111111+
011011101111111+
111011101111111-
001111101111111-
101111101111111+
 11111101111111+
 01000011111111+
011000011111111-
111000011111111+
000100011111111-
100100011111111+
 10100011111111+
  1100011111111+
  0010011111111+
 01010011111111+
011010011111111-
111010011111111+
   110011111111+
   001011111111+
000101011111111+
100101011111111-
 10101011111111+
  1101011111111+
    11011111111+
    00111111111+
  0010111111111+
001010111111111-
101010111111111+
 11010111111111+
   110111111111+
     1111111111*
 000000011011+
0100000011011-
1100000011011+
  10000011011+
0001000011011-
1001000011011+
0011000011011-
1011000011011+
 111000011011+
 000100011011+
0100100011011-
1100100011011+
  10100011011+
   1100011011+
0000010011011+
1000010011011-
0010010011011+
1010010011011-
 110010011011+
  01010011011+
0011010011011+
1011010011011-
 111010011011+
0000110011011+
1000110011011-
 100110011011+
0110110011011-
1110110011011+
  00001011011+
 010001011011+
0110001011011+
1110001011011-
 001001011011+
0101001011011+
1101001011011-
0011001011011+
1011001011011-
0001101011011+
1001101011011-
0011101011011+
1011101011011-
 111101011011+
  00011111011+
0010011111011+
1010011111011-
 110011111011+
0001011111011+
1001011111011-
 101011111011+
0111011111011-
1111011111011+
0101111111011-
1101111111011+
 011111111011+
0111111111011-
1111111111011+
 000001000111+
0100001000111+
1100001000111-
0010001000111+
1010001000111-
  00101000111+
 010101000111+
0110101000111+
1110101000111-
 001101000111+
0101101000111+
1101101000111-
0011101000111+
1011101000111-
  00010100111+
0010010100111-
1010010100111+
 110010100111+
0001010100111-
1001010100111+
 101010100111+
0111010100111+
1111010100111-
0101110100111+
1101110100111-
 011110100111+
0111110100111+
1111110100111-
0000001100111+
1000001100111-
 100001100111+
  10001100111+
0101001100111-
1101001100111+
 011001100111+
0111001100111-
1111001100111+
0000101100111+
1000101100111-
 100101100111+
  10101100111+
   1101100111+
0100011100111+
1100011100111-
 010011100111+
0110011100111+
1110011100111-
  01011100111+
 011011100111+
0111011100111+
1111011100111-
 000111100111+
0100111100111+
1100111100111-
0010111100111+
1010111100111-
0000011001111-
1000011001111+
 100011001111+
0110011001111+
1110011001111-
0001011001111-
1001011001111+
 101011001111+
  11011001111+
0100111001111+
1100111001111-
 010111001111+
0110111001111+
1110111001111-
 000000101111+
0100000101111-
1100000101111+
0010000101111-
1010000101111+
 001000101111+
0101000101111-
1101000101111+
  11000101111+
0000100101111-
1000100101111+
0010100101111-
1010100101111+
 110100101111+
  00001101111+
0010001101111-
1010001101111+
 110001101111+
0001001101111-
1001001101111+
 101001101111+
0111001101111+
1111001101111-
0101101101111+
1101101101111-
 011101101111+
0111101101111+
1111101101111-
   0011101111+
  01011101111+
0011011101111+
1011011101111-
 111011101111+
  00111101111+
0010111101111+
1010111101111-
 110111101111+
0001111101111+
1001111101111-
 101111101111+
0111111101111-
1111111101111+
 000000011111+
0100000011111-
1100000011111+
  10000011111+
0001000011111-
1001000011111+
0011000011111-
1011000011111+
 111000011111+
0001100011111-
1001100011111+
 101100011111+
0111100011111+
1111100011111-
   0010011111+
 001010011111+
0101010011111+
1101010011111-
  11010011111+
 000110011111+
0100110011111+
1100110011111-
  10110011111+
0001110011111+
1001110011111-
0011110011111+
1011110011111-
 111110011111+
 000011011111+
0100011011111-
1100011011111+
0010011011111-
1010011011111+
  00111011111+
 010111011111+
0110111011111-
1110111011111+
 001111011111+
0101111011111-
1101111011111+
0011111011111-
1011111011111+
0000000111111+
1000000111111-
 100000111111+
0110000111111-
1110000111111+
  00100111111+
0010100111111+
1010100111111-
 110100111111+
0001100111111+
1001100111111-
 101100111111+
0111100111111-
1111100111111+
0000010111111-
1000010111111+
0010010111111-
1010010111111+
 110010111111+
  01010111111+
0011010111111-
1011010111111+
 111010111111+
   0110111111+
  01110111111+
0011110111111-
1011110111111+
 111110111111+
0000001111111+
1000001111111-
 100001111111+
  10001111111+
   1001111111+
0100101111111-
1100101111111+
 010101111111+
0110101111111-
1110101111111+
  01101111111+
 011101111111+
0111101111111-
1111101111111+
0000011111111-
1000011111111+
 100011111111+
  10011111111+
   1011111111+
    111111111*
  0000011011+
001000011011+
101000011011-
 11000011011+
   100011011+
000010011011+
100010011011-
 10010011011+
  1010011011+
 00110011011+
010110011011-
110110011011+
  0001011011+
 01001011011+
011001011011+
111001011011-
001101011011+
101101011011-
 11101011011+
  0011111011+
 01011111011+
011011111011-
111011111011+
001111111011-
101111111011+
 11111111011+
 00001000111+
010001000111+
110001000111-
  0101000111+
 01101000111+
011101000111+
111101000111-
  0010100111+
 01010100111+
011010100111-
111010100111+
001110100111-
101110100111+
 11110100111+
  0001100111+
001001100111-
101001100111+
 11001100111+
   101100111+
000011100111-
100011100111+
 10011100111+
  1011100111+
 00111100111+
010111100111+
110111100111-
 00011001111+
010011001111-
110011001111+
  1011001111+
000111001111-
100111001111+
 10111001111+
 00000101111+
010000101111+
110000101111-
  1000101111+
000100101111+
100100101111-
 10100101111+
  0001101111+
 01001101111+
011001101111-
111001101111+
001101101111-
101101101111+
 11101101111+
   011101111+
  0111101111+
 01111101111+
011111101111-
111111101111+
  0000011111+
001000011111+
101000011111-
 11000011111+
 01100011111+
011100011111-
111100011111+
   010011111+
  0110011111+
001110011111+
101110011111-
 11110011111+
 00011011111+
010011011111+
110011011111-
  0111011111+
 01111011111+
011111011111+
111111011111-
 00000111111+
010000111111-
110000111111+
  0100111111+
 01100111111+
011100111111-
111100111111+
000010111111+
100010111111-
 10010111111+
  1010111111+
   110111111+
   001111111+
000101111111-
100101111111+
 10101111111+
  1101111111+
    11111111*
  00011011+
 010011011+
0110011011+
1110011011-
 001011011+
0101011011-
1101011011+
 011111011+
0111111011-
1111111011+
0001000111+
1001000111-
 101000111+
 010100111+
0110100111-
1110100111+
  01100111+
 011100111+
0111100111+
1111100111-
 011001111+
0111001111+
1111001111-
 000101111+
0100101111+
1100101111-
 001101111+
0101101111-
1101101111+
  11101111+
 000011111+
0100011111-
1100011111+
  10011111+
0011011111+
1011011111-
 111011111+
0000111111+
1000111111-
 100111111+
  10111111+
   1111111*
 0011011+
01011011+
11011011-
01111011-
11111011+
01000111+
11000111-
00100111-
10100111+
 1100111+
01001111-
11001111+
00101111+
10101111-
 1101111+
 0011111+
01011111-
11011111+
  111111*
 011011+
0111011-
1111011+
0000111-
1000111+
 100111+
0001111-
1001111+
 101111+
  11111*
01011-
11011+
00111+
10111-
 1111*
0011-
1011+
 111*
01-
11*
0-
1*
30, 2928, 272625, 242322, 212019, 18
403938, 3736, 353433, 3231

The Good tails are the solutions. If just by looking at sufficiently long tails, each were ultimately a Good tail, then proof by full induction would be successful.

Renewable energy? I'm a big fan! ♾️

Bigger Bit by Bit

Of all lengths up to 40 which I have tested, I found the following distribution. I show only the lengths producing new Good tails and each time the percentage of all possible numbers of that bit length. As I show below at least one in two lengthenings of a Bad tail is again Bad. Thus, the Bad tails can never reach 0%. And the new Good percentage can at best be half the previous Bad percentage. Usually it falls far short of that because it often takes several more steps to stop and there is only exactly one shortest Good tail lengthening it. But it also can't permanently fall to 0% because I also show that it's always possible to find a Good tail by lengthening a Bad tail.

l2l numbersBad tailsnew Good tailscontain Good tails
12150.000%150.000%150.000%
24125.000%125.000%375.000%
416318.750%1 6.250%1381.250%
532412.500%2 6.250%2887.500%
71281310.156%3 2.344%11589.844%
825619 7.422%7 2.734%23792.578%
101,02464 6.250%12 1.172%96093.750%
124,096226 5.518%30 0.732%3,87094.482%
138,192367 4.480%85 1.038%7,82595.520%
1532,7681,295 3.952%173 0.528%31,47396.048%
1665,5362,114 3.226%476 0.726%63,42296.774%
18262,1447,495 2.859%961 0.367%254,64997.141%
201,048,57627,328 2.606%2,652 0.253%1,021,24897.394%
212,097,15246,611 2.223%8,045 0.384%2,050,54197.777%
238,388,608168,807 2.012%17,637 0.210%8,219,80197.988%
2416,777,216286,581 1.708%51,033 0.304%16,490,63598.292%
2667,108,8641,037,374 1.546%108,950 0.162%66,071,49098.454%
27134,217,7281,762,293 1.313%312,455 0.233%132,455,43598.687%
29536,870,9126,385,637 1.189%663,535 0.124%530,485,27598.811%
312,147,483,64823,642,078 1.101%1,900,470 0.088%2,123,841,57098.899%
324,294,967,29641,347,483 0.963%5,936,673 0.138%4,253,619,81399.037%
3417,179,869,184151,917,636 0.884%13,472,296 0.078%17,027,951,54899.116%
3534,359,738,368263,841,377 0.768%39,993,895 0.116%34,095,896,99199.232%
37137,438,953,472967,378,591 0.704%87,986,917 0.064%136,471,574,88199.296%
39549,755,813,8883,611,535,862 0.657%257,978,502 0.047%546,144,278,02699.343%
401,099,511,627,7766,402,835,000 0.582%820,236,724 0.075%1,093,108,792,77699.418%

The Collatz community has tested all numbers up to 68 bits long. It was found experimentally that they all do stop ultimately. But, impressive as that may be, that only explored a relatively shallow tree up to depth 68 – a mere drop in the sea of infinity. A tiny fraction of those numbers won't stop in 68 steps. E.g., if one of them stopped in 100 steps, that's to say that those 68 bits become a Good tail if padded with 0-bits to length l = 100. But then, flipping that 100th bit to '1' will give a different number which is a Bad tail.

The next frontier are the 69 bit numbers with a leading 1-bit. It's a waste of time to test all those numbers. Given my list of all Bad tails of length 40, it suffices to test only those 0.58% of 69 bit numbers ending in one of those tails. And I'd assume there is a record of how many steps it took all the tested 68 bit numbers to stop. Only those probably under 0.2% that took more than 68 steps constitute Bad tails. By testing "only" these trillion (for Americans & other short-scalers: quintillion) problematic cases successfully we'd know that they all stop.

What's a collapsed horse enclosure?  Unstable.   🙃

Colossal Collatz Collapse

Alas I can derive from any given tail both Good and Bad tails of any length. Because of the automaton rule and how bits tumble down the diagonal to ultimately influence the then lowest bit, they come down as two distinct values. One of them will halve the number, which sometimes gives a Good tail – when that number was less than double the original. The other will again drive the sequence up. Bit l determines step l – not alone in an obvious way, which is why it's hard to predict. But it alone is enough to steer step l.

It's trivial to derive a Bad tail from a Good tail. You only need to flip its first bit. Remember it's Good because that's the minimum length at which it stops. That means the 1st bit, whatever its value, will reach the lowest position as a 0-bit in l - 1 steps. Thus, flipping whatever that came from will make it arrive as a 1-bit, which will make the number grow again.

It's trivial to lengthen any given Bad tail, by enforcing henceforth getting odd numbers: continue beyond l steps, till there is a 0-bit at the end. Replace where it came from in the original number with a 1-bit and start over. This is flipping because continuing beyond l bits meant padding with 0-bits. E.g., '1011' reaches a 0-bit at the end in 5 steps, so start over with '11011'. This will get a final 0-bit in 9 steps. Start over with '100011011', which will end in a 0-bit in 10 steps. Start over with '1100011011'. Note that I've glossed over where we found 1-bits at the end. These are already Bad tails.

This can be optimised with a modified variant of above. It takes only one argument and prepends both '0' and '1' to it but still outside of the diagonal. It exits when we've used up l steps and if the next low bit is a '1'. Here it's the 2nd case that ends not just with '1' but '01111'. Thereby we know that the next four 1-bits are as desired, and the 5th needs to be flipped, i.e. we next prepend '10001'. Doing it semi-graphically is cute but hardwired to 64 bits. It would again need bignum and just counting bits, instead of ever longer sequences. Writing an endless loop that will catapult any Bad tail to the sky is left as an exercise for you:

pl -oA '$a = eval "0b$_"; $l = length; $a, $a|(1<<$l)' \
    'if( $_ < 0 ) { $l = -$_; next }
    $n = $_; $b = 2; $p = 85 - $l; echo "---" if $ARGIND;
    while( 1 ) {
        echo qw(\\ / +)[$b], Form( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        if( ++$p > 85 ) { echo "tail too short"; exit if $b; last }
    }' 1100011011
pl -oA '$a = eval "0b$_"; $l = length; $a, $a|(1<<$l)' \
    'if( $_ < 0 ) { $l = -$_; next }
    $n = $_; $b = 2; $p = 85 - $l; e "---" if $I;
    while( 1 ) {
        e qw(\\ / +)[$b], F( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        if( ++$p > 85 ) { e "tail too short"; exit if $b; last }
    }' 1100011011
+                  795                                                       \1100011011
/                 1193                                                      10\010101001
/                 1790                                                      110\11111110
\                  895                                                       110\1111111
/                 1343                                                      10100\111111
/                 2015                                                      111110\11111
/                 3023                                                     10111100\1111
/                 4535                                                    1000110110\111
/                 6803                                                    11010100100\11
/                10205                                                   1001111101110\1
/                15308                                                   11101111001100\
tail too short
---
+                 1819                                                      1\1100011011
/                 2729                                                     101\010101001
/                 4094                                                     1111\11111110
\                 2047                                                      1111\1111111
/                 3071                                                     101111\111111
/                 4607                                                    10001111\11111
/                 6911                                                    110101111\1111
/                10367                                                   10100001111\111
/                15551                                                   111100101111\11
/                23327                                                  10110110001111\1
/                34991                                                 1000100010101111\
tail too short

Inversely it's trivial to find a Good tail ending in any given Bad tail, by enforcing henceforth getting even numbers: just do the opposite of above. Continue beyond l steps, till you either reach a smaller number or there is a 1-bit at the end. If smaller, pad the original number with that many 0-bits and you're done. Else replace where the 1-bit came from in the original number with a 1-bit (it must have gotten flipped on the way down) and start over. E.g., '1010011011' ends in a 1-bit in 11 steps. Therefore try '11010011011', which gives a 1-bit in 13 steps. Found it, '1011010011011' stops. You either already get final 0-bits or you flip to produce them. Then you're guaranteed to find a Good tail, by repeatedly halving.

As another example, let's try an Ugly with many 1-bits, only inverting the exit condition. This one will end in '1000', i.e. three 0-bits as desired and a 1-bit to be flipped. Thus, you can prepend that same '1000', except it's two bits longer than what's actually needed to stop. Actually you'd first check if there are enough 0-bits to stop – in this case two, since the last number is less than 4x the original:

pl -oA '$a = eval "0b$_"; $l = length; $a, $a|(1<<$l)' \
    'if( $_ < 0 ) { $l = -$_; next }
    $n = $_; $b = 2; $p = 85 - $l; echo "---" if $ARGIND;
    while( 1 ) {
        echo qw(\\ / +)[$b], Form( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        if( ++$p > 85 ) { echo "tail too short"; exit if !$b; last }
    }' 110000001111111111111111
pl -oA '$a = eval "0b$_"; $l = length; $a, $a|(1<<$l)' \
    'if( $_ < 0 ) { $l = -$_; next }
    $n = $_; $b = 2; $p = 85 - $l; e "---" if $I;
    while( 1 ) {
        e qw(\\ / +)[$b], F( "%20d %1:64b" ) =~ s/.{$p}\K( *)/"\\" . 0 x length $1/er;
    last if $_ < $n;
        if( $b = $_ & 1 ) { ++($_ += $_ >> 1) } else { $_ >>= 1 }
        if( ++$p > 85 ) { e "tail too short"; exit if !$b; last }
    }' 110000001111111111111111
+             12648447                                         \110000001111111111111111
/             18972671                                        10\01000010111111111111111
/             28459007                                        110\1100100011111111111111
/             42688511                                       10100\010110101111111111111
/             64032767                                       111101\00010000111111111111
/             96049151                                      10110111\0011001011111111111
/            144073727                                     1000100101\100110001111111111
/            216110591                                     11001110000\11001010111111111
/            324165887                                    1001101010010\0110000011111111
/            486248831                                    11100111110111\001000101111111
/            729373247                                   1010110111100101\01101000111111
/           1094059871                                  100000100110110000\0011101011111
/           1641089807                                  1100001110100010000\101100001111
/           2461634711                                 100100101011100110010\00010010111
/           3692452067                                 1101110000010110010110\0011100011
/           5538678101                                101001010001000011000010\101010101
/           8308017152                                1111011110011001001001000\00000000
\           4154008576                                 1111011110011001001001000\0000000
\           2077004288                                  1111011110011001001001000\000000
\           1038502144                                   1111011110011001001001000\00000
\            519251072                                    1111011110011001001001000\0000
\            259625536                                     1111011110011001001001000\000
\            129812768                                      1111011110011001001001000\00
\             64906384                                       1111011110011001001001000\0
\             32453192                                        1111011110011001001001000\
tail too short

Note that by prepending 1-bits we get utterly different numbers! I don't conclude anything about any one individual tail – that's mostly found by calculating it through. What I do show pertains to how the whole set of numbers behaves – relative to characteristic endings. Thus, the above is totally different from claiming that any Bad tail will ultimately become Good, just by trying long enough. On the contrary, since Bad tails can be lengthened infinitely, giving ever longer Bad tails, they never die out. Every shorter Bad tail is at the end of infinitely many longer ones.

I would look more mountainous – if I were so inclined. 🙃

Terraforming

Above we did a straight rise to turn any tail into a maximally Bad one, as well as a straight descent to a Good one. But these are just the extremes. Any other silhouette can be crafted, with the limitation that it stops when reaching a smaller number – though for effect we could exceptionally continue towards total stopping… In pixel art it could be rendered proportionally, but in ASCII art the formula gives a slope up almost ¼ less weight than a slope down. Let's do Mounts Lhotse & Everest – sideways for simplicity:

pl '$j = 0; $i = 40; $n = $_ = 0b100000000011011111;
    while( 1 ) {
        form "%*b  %s", $i, $_, ("\\", " /")[$j > $i];
    last if $_ < $n;
        $j = $i;
        if( $_ & 1 ) { ++$i; ++($_ += $_ >> 1) } else { --$i; $_ >>= 1 }
    }'
pl '$j = 0; $i = 40; $n = $_ = 0b100000000011011111;
    while( 1 ) {
        f "%*b  %s", $i, $_, ("\\", " /")[$j > $i];
    last if $_ < $n;
        $j = $i;
        if( $_ & 1 ) { ++$i; ++($_ += $_ >> 1) } else { --$i; $_ >>= 1 }
    }'
                      100000000011011111  \
                       110000000101001111  \
                       1001000000111110111  \
                        1101100001011110011  \
                        10100010010001101101  \
                         11110011011010100100  \
                         1111001101101010010   /
                         111100110110101001   /
                         1011011010001111110  \
                         101101101000111111   /
                         1000100011101011111  \
                          1100110101100001111  \
                          10011010000010010111  \
                           11100111000011100011  \
                           101011010100101010101  \
                           1000000111111000000000  \
                           100000011111100000000   /
                           10000001111110000000   /
                           1000000111111000000   /
                           100000011111100000   /
                           10000001111110000   /

Cycles?

Another way in which Collatz could be wrong is if there were more cycles. Looking at the odds halved optimisation is equivalent because any unoptimised even cycle element would also be halved. E.g., Collatz' cycle 1-4-2-1 is a superset of the optimised function's cycle 1-2-1. If the tail-theory developed above were directly relevant to cycles, all other numbers ending in '01' would form a cycle too. Instead the way they stop initially diverges: 5-8-4, 9-14-7, 13-20-10, 17-26-13, 21-32-16…

Good Given

A picture doesn't always say more than a thousand words. Back when I thought ternary or base 6 might be helpful, I rendered pretty trees for 011, 0111, 01111, 011111 and 111111, but I couldn't spot anything useful, even though the following info is hidden in there.

Only deriving longer Good tails gives us all tails: for every Bad tail there is only exactly one shortest Good tail lengthening it. This is because I force every lengthening to be a step down, halving the last result. If I flip even only one bit, the next result will be over three times as big. That will then require one or even two more steps to stop.

As we lengthened a Bad tail in such a way that the next prepended bit would drive the sequence down, at each step we also found a longer Bad tail. Either the 0-bit was Bad and we had to flip that, or the 0-bit was Good, and then a 1-bit would give a Bad tail. Either way, at each step we lengthened there was both a Bad extension and another that was itself Good or at least a step down. By the time we found the Good tail, for every step we had also found a longer Bad tail. If we do this repeatedly starting with every shortest Bad tail, with few sequences needing to be calculated, we will raise the length of all explored tails, finding all the Bad ones as a by-product.

E.g., starting with the shortest Bad tail '1' we find a Good tail '01'. Flipping the leading 0-bits there's a new Bad tail '11', which doesn't even require testing. Diving deeper with that, '011' is undecided but goes down. Then '111' must be a Bad (actually Ugly) tail, and I continue with '0011', which is Good, so '1011' must again be Bad. Both new Bad tails must now be dealt with in the same way. Always starting with the shortest ones, gives a different order from my table above but systematically ensures that we cover all tails up to a certain length. Since '0111' goes down, '1111' must be a Bad (actually Ugly). Then the other scenario occurs: '00111' is Bad, so for the 1st time in this paragraph, we must flip the 1st bit to get a Good '10111'. From the previous round we still have the 2nd Bad tail '1011' to deal with, and then from this round one new tail of length 4 and two of length 5: '1111', '00111', '11011'.

Unlike my initial result of a naïve brute-force search over bit-lengths, we're now truly developing this as a tree. As a bounty, the lower part just came to us without calculations. Instead of the order above, sorted by low bits, it's clearer to invert each group around the generating Good tail, so that flipped bits at the tip of each Bad face their Good counterpart. Shown here is only one round, going from an Ugly (where 24 spaces grouped 224 different actual Bad tails) to its shortest Good extension. I.e. by doubling that already huge number of tails, only a single Good one appears (more will from each new Bad at greater lengths):

010001111100101011101100101111111111111111111111111111111111111111111+
 00001111100101011101100101111111111111111111111111111111111111111111+
     0111100101011101100101111111111111111111111111111111111111111111+
      011100101011101100101111111111111111111111111111111111111111111+
       01100101011101100101111111111111111111111111111111111111111111+
        0100101011101100101111111111111111111111111111111111111111111+
         000101011101100101111111111111111111111111111111111111111111+
            001011101100101111111111111111111111111111111111111111111+
              0011101100101111111111111111111111111111111111111111111+
                01101100101111111111111111111111111111111111111111111+
                 0101100101111111111111111111111111111111111111111111+
                  001100101111111111111111111111111111111111111111111+
                    0100101111111111111111111111111111111111111111111+
                     000101111111111111111111111111111111111111111111+
                        001111111111111111111111111111111111111111111+
110001111100101011101100101111111111111111111111111111111111111111111-
                         11111111111111111111111111111111111111111111*
                       1101111111111111111111111111111111111111111111+
                      10101111111111111111111111111111111111111111111+
                   11100101111111111111111111111111111111111111111111+
               111101100101111111111111111111111111111111111111111111+
             11011101100101111111111111111111111111111111111111111111+
           1101011101100101111111111111111111111111111111111111111111+
          10101011101100101111111111111111111111111111111111111111111+
    11111100101011101100101111111111111111111111111111111111111111111+
   101111100101011101100101111111111111111111111111111111111111111111+
  1001111100101011101100101111111111111111111111111111111111111111111+

Approximation

We saw that every tail predicts the next l steps a sequence will take – no matter what bits it gets prefixed with. We have one self-contained evolution in the triangles (in the examples) on the right. It drives the separate evolution to the left of the divide. Therefore we can express the effect of the tail after l steps as a factor. Since the tail melts completely within l steps, we can just as well apply that factor to any bit sequence we prefix directly, i.e. appending any tail, l 0-bits are just as good.

What actual number will any prefix with this tail reach after l steps? Let u be the number of steps up a Good or Bad tail takes, i.e. the number of forward slashes, or the cumulated width of red stripes. Then after l steps the result of applying the sequence to any number n with that tail will be roughly n × 3u/2l – slightly more because this ignores the + 1 u times. The divisor 2l is only to get rid of the tail we dutifully appended. If we skip that part, we just have p × 3u where p is the unshifted prefix.

Prediction

More precisely, the number part left of the triangle (in the examples) kind of has its own Collatz evolution, albeit with two major differences for the 1st l steps: whether it gets halved down, or multiplied up, depends not on its low bit left of the divide but still on the overall low bit. And if it gets multiplied, 1 only gets added when there's a carry bit out of the triangle. This being identical, given any tail, for all numbers prepended to it, the evolution to the left is precisely predictable:

We can remember (or recalculate) the result r0 after l steps for the tail with a prefix of 0 as well as r1 for a prefix of 1. Then for any prefix p the result will be rp = r0 + p × (r1 - r0). To demonstrate, for the above tails, I show metadata for both ways: give various prefixes, the result of putting them before the tail, the approximate result from the previous section, the precise prediction from this paragraph, and by how much the approximation was off. I.e. a starting number in the 2nd column reaches the 4th column's after l steps:

pl -o4 '($_, $u, $r0, $r1) = @$_; $l = length; $f = 3 ** $u / 2 ** $l;
    $t = eval "0b$_"; $d = $r1 - $r0;
    form "tail:     ...$_  u:l-factor: %.3f  r1-r0: %d", $f, $d;
    form "%13b... = %10d %16.3f %12d  %5.3f", $_, $n = ($_ << $l) | $t, $a = $n * $f, $b = $r0 + $_ * $d, $b - $a
        for 2, 3, 31, 1023, 1024, 4711' \
    0011 2 2 11 \
    01011 3 10 37 \
    10111 3 20 47 \
    1111100111 6 712 1441 \
    000000001111111111 11 692 177839
pl -o4 '($_, $u, $r0, $r1) = @$_; $l = length; $f = 3 ** $u / 2 ** $l;
    $t = eval "0b$_"; $d = $r1 - $r0;
    f "tail:     ...$_  u:l-factor: %.3f  r1-r0: %d", $f, $d;
    f "%13b... = %10d %16.3f %12d  %5.3f", $_, $n = ($_ << $l) | $t, $a = $n * $f, $b = $r0 + $_ * $d, $b - $a
        for 2, 3, 31, 1023, 1024, 4711' \
    0011 2 2 11 \
    01011 3 10 37 \
    10111 3 20 47 \
    1111100111 6 712 1441 \
    000000001111111111 11 692 177839
tail:     ...0011  u:l-factor: 0.562  r1-r0: 9
           10... =         35           19.688           20  0.312
           11... =         51           28.688           29  0.312
        11111... =        499          280.688          281  0.312
   1111111111... =      16371         9208.688         9209  0.312
  10000000000... =      16387         9217.688         9218  0.312
1001001100111... =      75379        42400.688        42401  0.312
tail:     ...01011  u:l-factor: 0.844  r1-r0: 27
           10... =         75           63.281           64  0.719
           11... =        107           90.281           91  0.719
        11111... =       1003          846.281          847  0.719
   1111111111... =      32747        27630.281        27631  0.719
  10000000000... =      32779        27657.281        27658  0.719
1001001100111... =     150763       127206.281       127207  0.719
tail:     ...10111  u:l-factor: 0.844  r1-r0: 27
           10... =         87           73.406           74  0.594
           11... =        119          100.406          101  0.594
        11111... =       1015          856.406          857  0.594
   1111111111... =      32759        27640.406        27641  0.594
  10000000000... =      32791        27667.406        27668  0.594
1001001100111... =     150775       127216.406       127217  0.594
tail:     ...1111100111  u:l-factor: 0.712  r1-r0: 729
           10... =       3047         2169.202         2170  0.798
           11... =       4071         2898.202         2899  0.798
        11111... =      32743        23310.202        23311  0.798
   1111111111... =    1048551       746478.202       746479  0.798
  10000000000... =    1049575       747207.202       747208  0.798
1001001100111... =    4825063      3435030.202      3435031  0.798
tail:     ...000000001111111111  u:l-factor: 0.676  r1-r0: 177147
           10... =     525311       354985.305       354986  0.695
           11... =     787455       532132.305       532133  0.695
        11111... =    8127487      5492248.305      5492249  0.695
   1111111111... =  268174335    181222072.305    181222073  0.695
  10000000000... =  268436479    181399219.305    181399220  0.695
1001001100111... = 1234961407    834540208.305    834540209  0.695

This gives a great optimisation for testing many numbers: we only need to remember a Bad tail's r0 and calculate the same prefixed with a 1-bit, giving us r1. Feeding these into the above formula, we get rp for any prefix we prepend. That way we can leapfrog over l steps of Collatz and start right at the unknown part. E.g., we could prepend 8 bits at once, giving us quick access to up to 256 new longer Bad tails for longer numbers (or less as we find Good tails in between, which would short circuit some of those 256).

Say we have a 69 bit Bad tail. Assuming all extensions by 8 bits are Bad, testing naively we would have 256 × (69+8) steps of Collatz to find those derived Bad tails. With this optimisation there are only 69 steps + 256 × (1 multiplication + 1 addition + 8 steps). This counts only my quest for ever longer Bad tails. If you want to test them exhaustively, in this way you can fairly cheaply extend to a great number of bits. Only from there on you'd finally have, sometimes many, more steps, to see if they actually stop.

I have written a Collatz Bad tails script cbt. It's seeded with the 19 8-bit Bad tails and their respective r0. From that it will calculate the same for 16 bits. This output can be compressed and fed back to the script, giving the 24 bits' data, and so on. I have taken this to also 40 bits, which even on an old laptop takes 2 hours, compared to 2 weeks for a full loop. These files can be split and fed in parallel on many computers. However, compressing with brotli -Z takes maybe 100x as long as the actual calculation. A slightly less compact xz -9e, which I used, still takes 10x as long. My SAN had problems with writing the 48 bits results, so I didn't do it. And I only hinted at how to convert the script to BigInt.

Side note: A more compact binary representation, with length encoding rather than fixed sizes, could be made less than half the size of my hex-encoding. And since there are rather few different endings to Bad tails, their low bits could be encoded instead of repeated over and over again. That could remain uncompressed or only lightly compressed to win a lot of time vs. 30% additional disk space as a compromise. Instead of writing out a bigger file every 8 bits, we could repeatedly recurse internally and do the same thing over for another 8 bits. For bigger l, we should also calculate the optimal number of bits to lengthen by, to balance with how many steps it takes to find r1.

I conclude that 6 is less than 5! I now get factorials. 😂

Conclusion

Given my findings, testing a bit deeper to 69 or more bits isn't even interesting. The true frontier is understanding what happens in depth as the Bad tails branch out. And I have proven that at least half of the branches at each level will fan out infinitely and shown how that relates to the appearing Good tails.

Is the notion of a number with an infinite amount of such and such digits mathematically sound?*) If so, any Bad tail, which always leads to one or two longer Bad tails, gives us a subtree with both infinitely many ever longer Good tails and even more infinite counter-examples to the Collatz conjecture. The latter would disprove Collatz – entschuldige bitte, mein Lieber!

On the other hand the correct mathematical notion might be a weaker statement: there's an infinite amount of individually finite numbers. If so, proof by full induction through my method alone isn't possible. Each of those ending in a Bad tail may or may not stop.

However then I have shown a way of efficiently whittling down the amount of numbers worth studying and testing to a relatively decreasing (inversely to increasing l) though huge subset with a big prediction-based optimisation. And I have shown that there can be no upper bound to sequence length, since I can make any Bad tail infinitely longer.

Iceberg's last words: "Ouch — the Titanic!" 😵‍💫

Caveat Lector

Collatz specialist Eric Roosendaal doesn't agree with my couleur de rose interpretation of infinity. It would seem that I haven't disproven the conjecture. Moreover, he doesn't think these things are new. As a consolation, he knows one of my favourite languages, Esperanto. He is also the uncle of well known Esperanto author Gerrit Berveling, whom I have met at several Esperanto world congresses. Collatz is infinite, but the world is small.

Daniel Pfeiffer, 2021-11-16, amended 2022-04-12